

Multi-Mission Space Ops Center (MMSOC)

Lt Col Robert M. Hessin
DET 12/VOC

Mark W. Stafford
The Aerospace Corporation

Overview

- Background
- MMSOC Vision
- Missions
- MMSOC Cost Efficiency
- Development & Acquisition Schedule
- MMSOC Advantages
- Mission Readiness
- Summary

MMSOC – Not a New Idea

MMSOC

"A single facility [entity] to perform satellite ops for AFSPC Space Vehicles (SVs) not currently supported by SMC SPOs... With potential to support a wide variety of missions ... and be a satellite command and control spiral evolution resource for RDT&E of new systems."

-- CONOPS for Satellite Operations Mission, Appendix F HQ AFSPC/XO, May 01

Current funding profile:

Interim	SOCTF	funding:
		_

MMSOC funding:

YEAR	FY03	FY04	FY05	FY06	FY07	FY08	FY09
Funding	0.172	4.370	4.518	4.619	22.299	24.028	27.297

MMSOC Vision

Single Space Operations Facility

- Space ops for "Specialized" AFSPC Satellites
- Perform other assigned missions
 - NRO, NASA, NOAA

Wide Variety of Missions

- Future Space Prototypes
- Unique AFSPC programs
- Boosters/Classified Ops

Combined Task Force

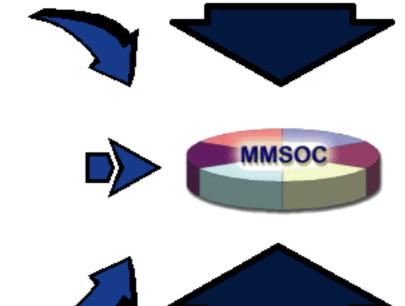
- AFSPC & Reserve personnel
- Contractor Ops

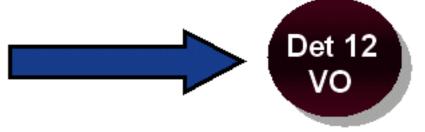
Spiral Evolution Resource

- RDT&E of new systems
- AFSPC resource for spiral development

Flexibility, Continuity, and Stability

- Support legacy and future programs
- Geographically separated backup


Disparate SOCS



Today

(Fragmented/Inefficient)

Cradle-to-Grave Concept

Future (Integrated/ Interoperable)

Missions

- Heritage Onizuka/Schriever Missions (BRAC Realigned)
 - Legacy Boosters (on-going)
 - NASA Shuttle Support (Aug 2004)
 - EELV (Oct 2005)
 - Defense Support Program (through 2005)
 - GPS Launch/Early Orbit (through 2005)
 - Midcourse Space Experiment (ongoing)
- Counterspace Systems
 - Interim Satellite as a Sensor (Nov 2004)
 - Classified R&D (2005 and on)
- Post-R&D Operational Assets
 - Coriolis (2005)
 - TACSAT-2 (2006)
 - C/NOFS (2006)
 - STP Sat, Orbital Express (2007/8)

#1 Future Mission Set

Rapid transition of new technology to the warfighter

MMSOC Cost Efficiency

- SMC Det 12/VO has extensive experience in SATOPS DT&E and end-to-end mission readiness
- Use historical data to produce accurate cost estimates
 - LOC estimates not generally used or accurate
- Rely on mission complexity and reuse of existing software/hardware to determine costs
 - MUS is estimated and a determining factor in cost
 - Communication requirements a driving force, but consistently going down
 - Sharing bandwidth and infrastructure between programs important
 - Number and structure of telemetry points & commands critical
- Consider sustainment costs before purchase and program accordingly
 - Review yearly for better cost alternatives

Development & Acquisition Schedule

- Satellite Ground Systems (FY07-08)
 - 10 strings, multiple ground systems in two SOCs
- Dedicated Antenna (FY07)
 - SAFB with multi-band capability
- Commercial Antenna Connectivity (FY05-08)
- Facility Build Out (FY07-08)
 - Multi-level security
 - Three separate SOCs (2 at SAFB, 1 at KAFB)
- Communication infrastructure and backbone (FY07)

MMSOC Advantages

MMSOC Use of COTS

- Multiple missions and ground system requirements drive a flexible architecture and open interfaces
- Must be willing to trade requirements and con ops for budget and schedule
- Minimize COTS modification to ensure schedules are met
- Working relationship with vendors critical
- Do not become mission dependant on one COTS product
 - Continue to test competitors products and provide feedback to reduce switching costs
 - Push vendors towards standards
- Maintain Open dialogue with vendors

MMSOC Advantages (cont)

Flexibility

- Try to use standard commercial interfaces and protocols when possible
- Platform Independence

Reliability

- Maintain different database environments on operational system with promotion schedules based on successful test
- Little to no offline or offsite development decreases probability of errors
- All software/hardware performance is tracked and a problem report databases is maintained and communicated to vendors

Maintainability

 Must program hardware/software upgrades in the budget to ensure technology refresh and compatibility

MMSOC Advantages (cont)

Spiral Evolution/Rapid Prototyping

- Provides initial capability at a reduced cost and risk
- Provides initial insight into development
- Provides opportunity to redirect efforts and experiment with new technology (failure is an option)

Maintain common core system infrastructure

- New missions reuse as much of the core as possible
- New missions pay for modifications
- Try to infuse new technology from each customer into the core to increase capability and reduce costs when possible

Mission Readiness

- Developers and Operators are Partners
 - Both must be involved from the beginning
 - Reduces rework and requirements modification and creep
- Developmental Testing
 - Build prototypes and test with real assets and operators during development when possible
- A collaborative environment between the warfighter (50 SW) and the developer (SMC/Det 12)
 - → a "golden handshake" between operators, acquirers, testers, & developers

Summary

- Total systems engineering approach is critical to mission success
- Relationship with COTS vendors significant component of mission assurance
- MMSOC heritage provides agile response for detailed (highend) operations with unique/emerging missions
- MMSOC built on a "golden handshake" between operators, acquirers, testers, & developers
- MMSOC can contribute to AFSPC's emerging mission sets -counterspace has the earliest need

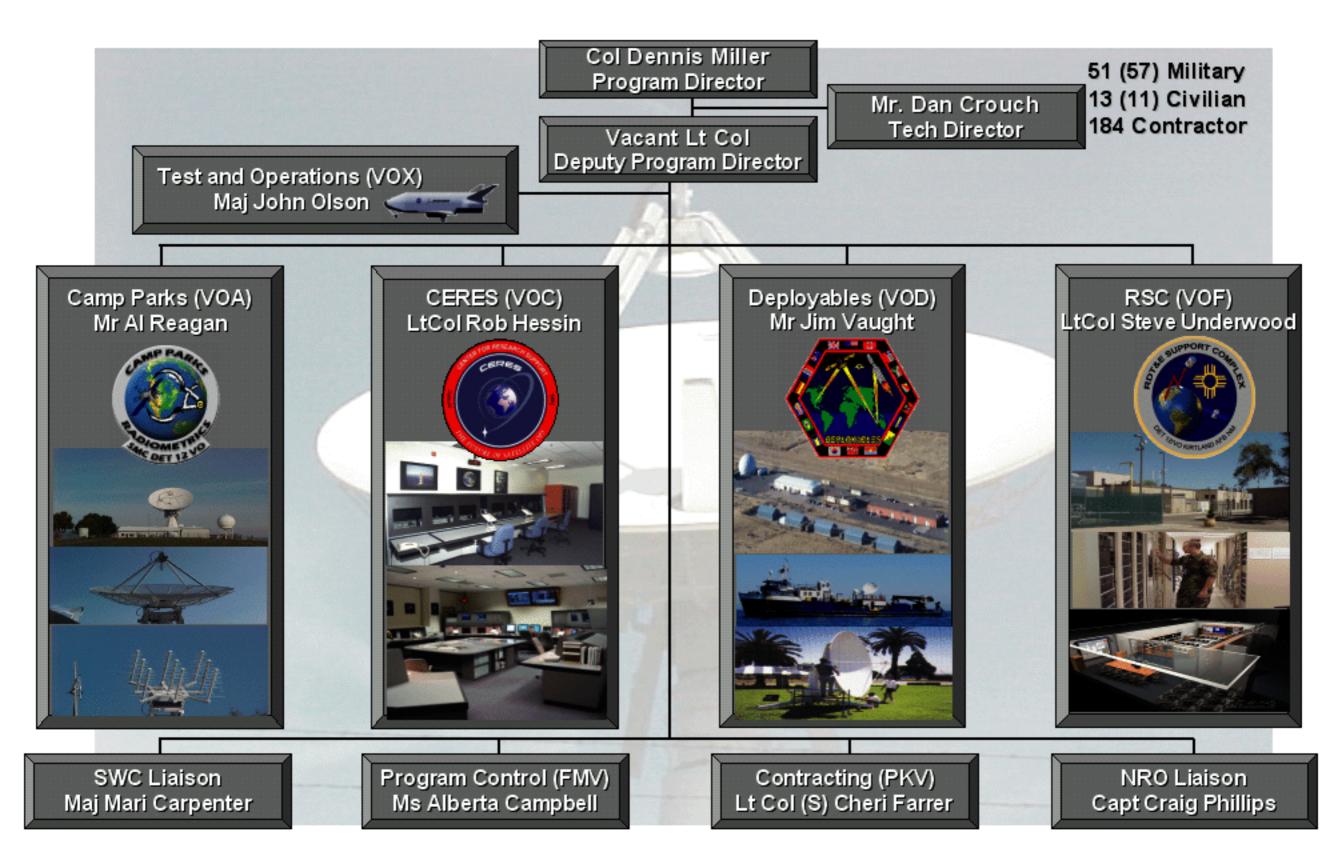
SMC Det 12 Col Neumeister

SMC Det 12/RP

ROCKET SYSTEMS LAUNCH PROGRAM Col Thongchua

SMC Det 12/VO

SPACE VEHICLE OPERATIONS
Col Miller


SMC Det 12/ST

DoD SPACE TEST PROGRAM Col White



SMC Det 12/VO Who We Are

SMC Det 12/VOC Center for Research Support

Space Operations Testbed

- Providing Rapid Capability to
 - Prototype
 - Evaluate
 - Activate

Space Ops

Concepts and C2

Systems

- Access to Ground/Space Assets
- 24/7 Contractor Operations
- Residual Satellite Operations

CERES (VOC)

Schriever AFB, CO

