Air Force Satellite Control Network Interoperability Progress Report

Ground Systems Architecture Workshop 31 March 2004

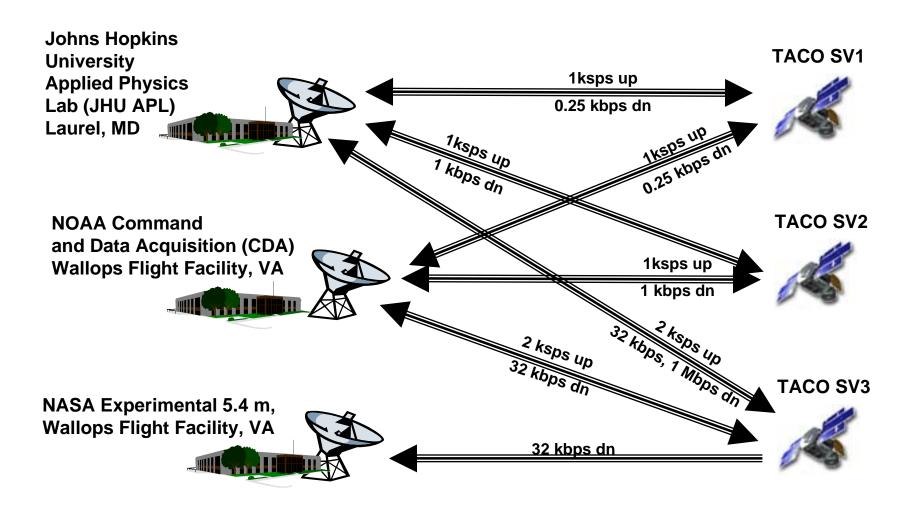
John Pietras
Global Science and Technology, Inc

Contents

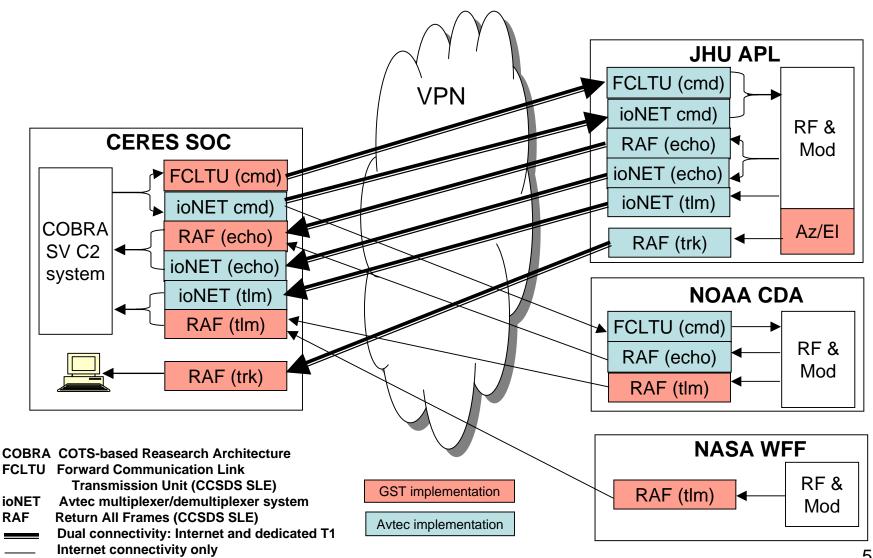
- Background of the AFSCN Interoperability Project
- Summary of Interoperability Project Phase 3
 - Completed in Summer 2003
- Transition from legacy- to standards-based infrastructure
- Overview of Phase 4 activities
 - Spring-Summer 2004

AFSCN Interoperability Project Background

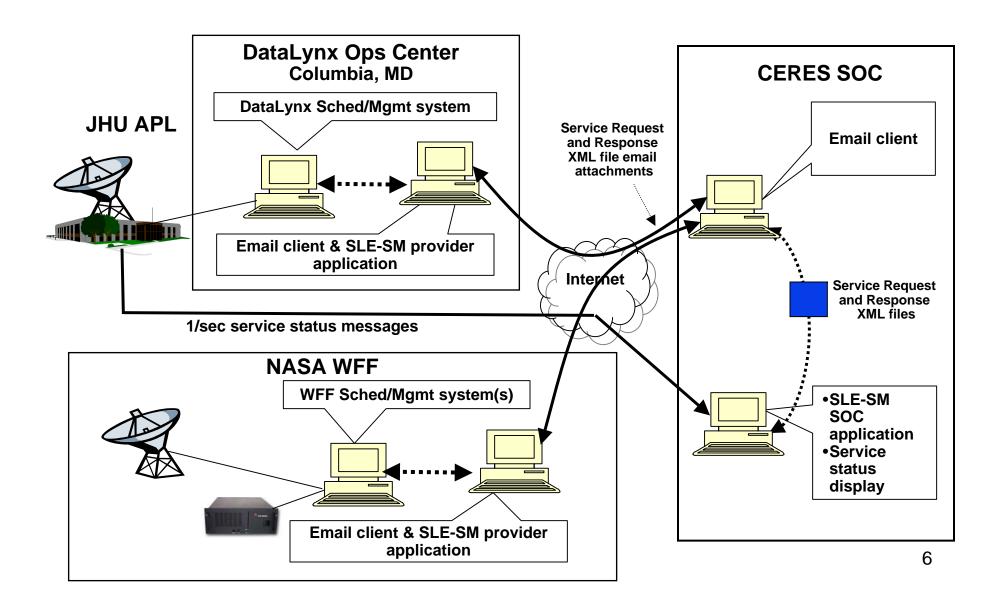
 Project is managed by SMC/RN as part of AF Satellite Control Network modernization program


Goals

- Adopt/define services that will facilitate interoperation among US government satellite ground control networks
- Base services on packet-switched network technology to continue the AFSCN's migration from circuit-switched technology


Approach

- Adopt existing space data standards where available and appropriate
- Adapt standards where necessary
- Feed enhancements back to standards community for broader acceptance
- Feed results into SCNC Architecture development
- Multi-phase study and demo project started in 2001
 - Phase 1: Standards assessments and lab tests
 - Phase 2: Field tests with AF R&D assets
 - Phase 3: Field tests with commercial and civil agency ground stations
 - Phase 4: Develop standards profile for national infrastructure, field test vendor implementations


Phase 3 Ground Stations and Space Vehicles

Phase 3 SOC-Ground Station Interfaces: Telemetry, Command, Echo & Tracking

Phase 3 Service Management Interfaces

Summary of Phase 3 Results*

Telemetry

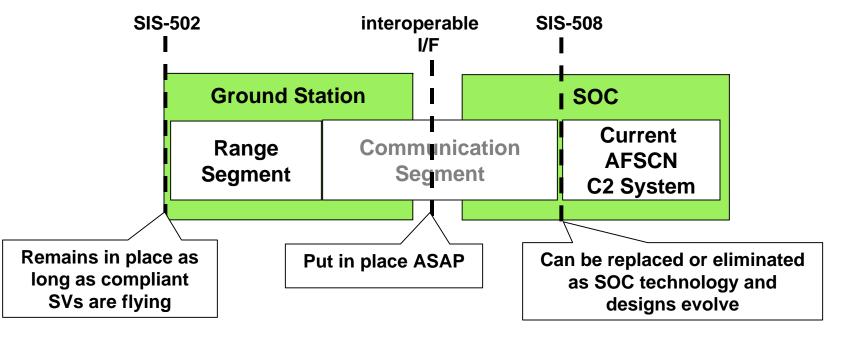
- Use of TCP and data buffering (~2-4 seconds additional delay) provided reliable delivery of the serial telemetry stream
- Telemetry TDC of SLE RAF implementation was accurate to within several tens of milliseconds, but not required 1 msec
- ioNET TDC was accurate to within 1 msec, but 170kbps digitized IRIG-B signal deemed overly consumptive of bandwidth

Command

Time-critical commanding was successful using both the FCLTU and ioNET based implementations

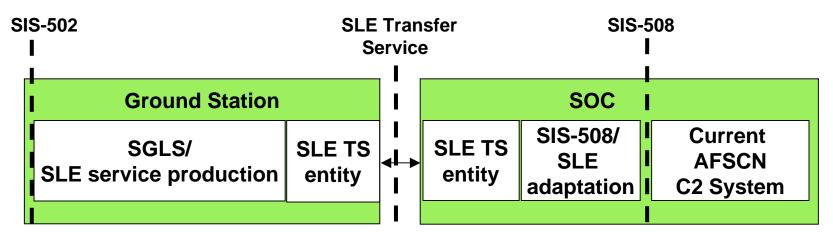
Command echo

Command echo was successful using both the RAF and ioNET based implementations

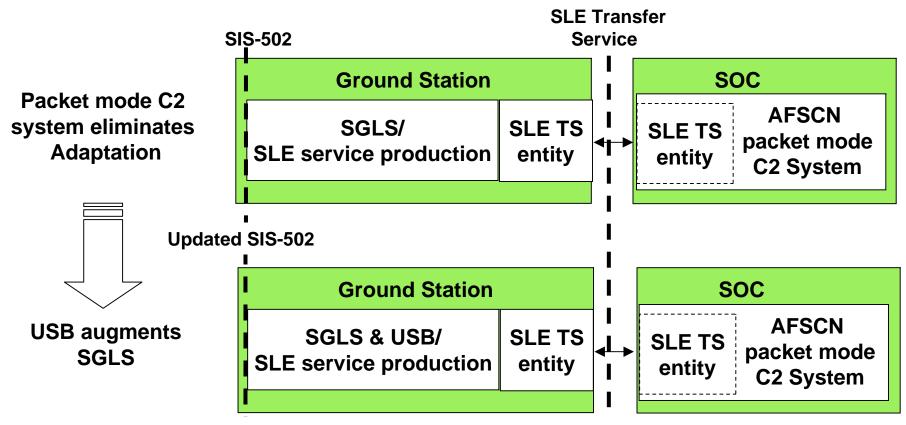

Service Management

- Contacts scheduled using SLE standard format schedule requests/responses
- Ad hoc methods needed for tracking data and RTS status

^{*} Full results are documented in the *SCNC Interoperability Phase 3 Project Report*, Honeywell Technology Solutions, Inc. 28 October 2003, prepared by Lance Williams


Transition from Legacy to Standards-Based Infrastructure (1 of 3)

- 3 reference points for a transition architecture
 - RF & modulation interface with the SV
 - Currently SIS-502D
 - New standards-based interoperable interface between ground station and SOC
 - Telemetry, command, and command echo interface as seen by the user C2 system
 - Currently SIS-508E


Transition from Legacy to Standards-Based Infrastructure (2 of 3)

- 3 sets of "standards" to enable interoperability for AFSCN-client SVs using SLE transfer services
 - SLE service production specifications that define the processing required to transform the data transferred by the SLE transfer service to/from RF
 - Currently SIS-502D
 - SLE transfer service specifications provide the interoperable interface
 - SLE service adaptation specifications that define the required transformations between SLE and legacy user interfaces
 - Currently SIS-508E

Transition from Legacy to Standards-Based Infrastructure (3 of 3)

- Adaptations eventually disappear as SOC designs natively incorporate SLE transfer services
- SLE service productions evolve with SV evolution

Phase 4 Architecture and Plans

- Use Phase 3 results to tune the service architecture
- Implement, demonstrate, and test the resulting set of services in vendor-supported hardware and software
- Develop specifications for the productions, adaptations, and transfer service modifications (where necessary)
- Build national and international consensus for support of these services
 - i.e., standardization

Phase 4 Implementation of SLE Services

Telemetry

- Develop new Return All Data (RAD) SLE transfer service
 - Supports AFSCN serial telemetry
 - Supports civil space needs not met by current RAF SLE service
- Transfer of digital timestamps (not digitized analog IRIG-B)

Command

- FCLTU service used to transfer discrete commands
 - No legacy (ADCCP, EXU) framing
 - Idle stripped at SOC, re-generated at ground station
- FCLTU service used to transfer all command symbols using "streaming" option

Command Echo

 RAD service used to transfer serial stream of command echo dibits

Service Management

Continue exploring use of SLE scheduling and configuration standards

Building National and International Consensus

Telemetry

- Adopt RAD specification and production as CCSDS Recommendations
 - CCSDS Birds of a Feather (BOF) group formed
- Adopt time-correlated telemetry adaptation in 508-legacy AFSCN SOCs

Command

- Adopt SGLS command production for FCLTU as US national interoperability capability
 - USTAG13 BOF group formed
- Adopt SGLS discrete commanding adaptation in 508-legacy AFSCN SOCs

Command echo

- Adopt SGLS command echo production for RAD as US interoperability capability
- Adopt SGLS command echo adaptation in 508-legacy AFSCN SOCs

Acknowledgements

- U.S. Air Force Space and Missile Systems Center Satellite and Launch Control SPO (SMC/RN)
 - AJ Ashby, 1Lt, USAF, project officer
 - Carl Sunshine, The Aerospace Corporation, technical lead
- Satellite Control Network Contract
 - Lance Williams, Interoperability project lead
 - JHU APL ground station
- AF Center for Research Support (CERES)
- NASA WFF and NOAA Wallops CDA ground stations
- Avtec Systems
- General Dynamics Advanced Information Systems

Phase 4 Participants

- U.S. Air Force Space and Missile Systems Center Satellite and Launch Control SPO (SMC/RN)
- Satellite Control Network Contract
- The Aerospace Corporation
- GST, Inc.
- AF Center for Research Support (CERES)
- Avtec Systems
- NOAA WFF
- GD-AIS
- L3Com
- RTLogic
- JPL, NASA