
Slide 1GSAW 2004 – ACE2 Breakout Session – Peter Hantos

Software Reviews Since 
Acquisition Reform –
Architecture-Driven 
Considerations

Dr. Peter Hantos

Senior Engineering Specialist

Software Acquisition and Process Office

Ground Systems Architecture Workshop 2004
ACE2 Breakout-Group Session

© 2004.  The Aerospace Corporation.© 2004.  The Aerospace Corporation.



Slide 2GSAW 2004 – ACE2 Breakout Session – Peter Hantos

Acknowledgements

• This work would not have been possible without assistance from 
the following:
– Reviewers

• Richard J. Adams, Software Acquisition and Process Office
• Suellen Eslinger, Software Acquisition and Process Office
• Karen L. Owens, Software Acquisition and Process Office
• Mary A. Rich, Principal Director, Software Engineering Subdivision

– Sponsor
• Michael Zambrana, USAF Space and Missile Systems Center, 

Directorate of Systems Engineering
– Funding source

• Mission-Oriented Investigation and Experimentation (MOIE) Research 
Program (Software Acquisition Task)



Slide 3GSAW 2004 – ACE2 Breakout Session – Peter Hantos

Agenda

• Perspectives on Review Issues
• Architecture-Driven Considerations vs. Architecture Reviews
• The Computer Software Configuration Item Controversy
• Functional Decomposition
• Architectural Layer Dependencies
• Use Cases
• Components of Implementation
• Technical Performance Measurements
• Conclusions



Slide 4GSAW 2004 – ACE2 Breakout Session – Peter Hantos

Background of Problem
• Pre-1994:

– MIL-STD-1521B (Technical Reviews)
• Formal milestone reviews
• Date of last version is June 4, 1985 (!)
• Supporting DoD-STD-2167A (Defense System Software Development)

• 1994:
– MIL-STD-498 (Software Development & Documentation)

• Although all other MIL standards are cancelled by the DoD, 
MIL-STD-498 was approved as an interim standard for 2 years

• Joint reviews: Schedule and content proposed by contractor
• Now:

– No official development or review standards of record
• Each acquisition defines a minimum set of major contractual technical reviews 

and associated entrance/exit criteria in its Integrated Master Plan, nevertheless:
– Neither the government nor the contractor has a clear concept of what reviews should 

contain and when they should occur
– Interpretation of those reviews (e.g., System PDR, System CDR) is left to individuals to 

decide
• Quality and content of reviews is widely different both within and across programs
• Quick, last-minute, before-review efforts to revive and customize MIL-STD-1521B 

proved to be ineffective



Slide 5GSAW 2004 – ACE2 Breakout Session – Peter Hantos

Perspectives on Review Issues 
• The Life Cycle Perspective (“When?”)*

– Pre-acquisition reform assumptions:
• Acquisition and development are exclusively Waterfall
• Reviews (SSR, PDR, CDR, etc.) are clearly positioned

– Now:
• Evolutionary Acquisition
• Iterative/Incremental and Spiral Development
• Emerging agile methods
• Asynchronous, in-process, interim reviews

* For more details see my upcoming presentation at the 2004 Systems & Software Technology Conference in 
Salt Lake City, Utah: Hantos, P.,“Software Reviews Since Acquisition Reform – The Life Cycle Perspective”



Slide 6GSAW 2004 – ACE2 Breakout Session – Peter Hantos

Perspectives on Review Issues (Cont.)

• The Artifact Perspective (“What?”) *
– Evolving performance and maturity of process artifacts and 

work products along the development life cycle
– Key areas of interest in analyzing the impact of new software 

development trends:
• Architecture
• Product-oriented software engineering activities
• Engineering management processes
• Integral software engineering activities
• Hardware-software technology
• Security

* For more details see my presentation at the Third Annual Conference on the Acquisition of Software-
Intensive Systems in Arlington, VA: Hantos, P.,“Software Reviews Since Acquisition Reform – The Artifact 
Perspective”, January 26-28, 2004



Slide 7GSAW 2004 – ACE2 Breakout Session – Peter Hantos

Presentation Objectives in the Context of 
Workshop Objectives

• Emphasize the importance of architecture as a basis for
– Understandability 
– Assessing maintainability, extensibility, and executability

• Clarify the difference between reviewing architecture vs. 
architecture-driven considerations during technical reviews.

• Demonstrate the inadequacy of MIL-STD-1521B as the basis for 
design reviews on architectural grounds
– Show the flaws in the Configuration Item (CI) concept
– Discuss requirements traceability and verification of the completeness 

of the design
– Discuss specification and review of Technical Performance 

Measurements (TPMs)
• Non-objective: How to conduct Architecture Reviews



Slide 8GSAW 2004 – ACE2 Breakout Session – Peter Hantos

Architecture-Driven Considerations vs. 
Architecture Reviews

• Architecture review objectives:
– Present business drivers underlying the architecture
– Present the definition of the system/software architecture

• Structure, behavior, collaboration, constraints, and quality attributes of 
components and interfaces

– Concentrate on significant elements that have a wide impact on:
• Structure, performance, robustness, evolvability, and scalability

– Present considered architectural approaches and decision rationale
– Present architecture style choices and decision rationale
– Present architecture evolution parameters
– Demonstrate consistency among:

• Concept of Operations (CONOP)
• Developed prototypes
• Requirements
• Architecture



Slide 9GSAW 2004 – ACE2 Breakout Session – Peter Hantos

Architecture-Driven Considerations

• During the review of the design, be cognizant of the underlying 
architecture-centric development process:
– Major architectural decisions:

• Ensure that the design does not conflict with major architectural decisions
– Architecture is more than a static blueprint:

• It is dynamically built, validated, baselined and elaborated during the 
iterative/incremental development life cycle

– Architectural views and related models*:
• Design model – Logical view (Top level abstractions)
• Process model – Process view (Logical view for complex systems)
• Implementation model – Implementation view (Organization of modules)
• Deployment model – Deployment view (Mapping runtime components)
• Use-case model – Use-case view (Validating the integrity of different views)

* Definitions of architectural views are from Reference [4]



Slide 10GSAW 2004 – ACE2 Breakout Session – Peter Hantos

The CSCI Controversy

• Current software development methods are not driven by 
acquisition standards:
– The term “CSCI” is counter-intuitive*, since even lower level elements of 

the system must be under Configuration Management
• Object-Oriented (OO) concepts and terminology are the norm:

– Objects – with flexible granularity
– Packages – for depicting logical object structure
– Deployment of Components on Nodes

• not CSCIs on HWCIs
– Distinction between source code and executable files
– Multiple, dynamic object instantiation, use of Object Request Brokers 
– Dynamic linking
– Distinction between Analysis, Design and Implementation

* For the definition of a Configuration Item based on DOD-STD-480 please see backup slide #24 



Slide 11GSAW 2004 – ACE2 Breakout Session – Peter Hantos

Functional Decomposition

System

System Primitives

• Successively decomposed the
system to system primitives level

• Supposed to provide requirements
traceability to validate completeness
of the design, but

• … No guarantee that these primitives
will work together on higher levels

• … Does not deal with non-functional 
requirements (performance, quality, 
security, etc.)

• The architecture should have been
evolving during decomposition



Slide 12GSAW 2004 – ACE2 Breakout Session – Peter Hantos

Synthesis – An Iterative Analysis/Design Circle

Separation of Concerns

System

System Primitives

System

System Primitives

Composition of Concerns

* For a less abstract JAVA implementation example please see backup slide #25 



Slide 13GSAW 2004 – ACE2 Breakout Session – Peter Hantos

OO: The Case for Use Cases

• Use Cases are not just for capturing requirements:
– Use Cases bind the core workflows
– Each development increment is a working realization of a set of Use Cases
– Multi-level hierarchy of Use Cases:

• Top level:
– External Use Cases – System behavior and actors

» Caveat: Use Cases cover only functional requirements
• Multiple lower levels:

– Internal Use Cases – Subsystem behavior and relationships

RequirementsRequirements AnalysisAnalysis ImplementationImplementationDesignDesign TestTest

Use Cases           Use Cases           



Slide 14GSAW 2004 – ACE2 Breakout Session – Peter Hantos

Components of Implementation

Screens Computations DBMS Reporting

System

• Implementation 1:
– Mainframe with display terminal

• Implementation 2:
– Client/Server – using “thin client”

• Implementation 3:
– Client/Server – using dedicated database server

Components of Implementation 1

Screens

<<executable>>
system.exe

Computations

Reporting

DBMS

<<file>>
screens.c

<<file>>
computations.c

<<file>>
reporting.c

<<file>>
dbms.c

Design Model Implementation Model
compilationobjects

Screens

<<executable>>
server.exe

Computations

Reporting

DBMS

<<file>>
screens.c

<<file>>
computations.c

<<file>>
reporting.c

<<file>>
dbms.c

Design Model Implementation Model
compilation

<<executable>>
thin_client.exe

objects

Components of Implementation 2

Screens

<<executable>>
dbms.exe

Computations

Reporting

DBMS

Design Model Implementation Model
compilation

<<executable>>
client.exe

<<file>>
screens.c

<<file>>
computations.c

<<file>>
reporting.c

<<file>>
dbms.c

objects

Components of Implementation 3



Slide 15GSAW 2004 – ACE2 Breakout Session – Peter Hantos

Technical Performance Measurements

Deployment of Implementation 3 using One PC

:Screens

:Computations

:Reporting

:DBMS

TCP/IP

TCP/IP

Single Windows PC

Server

Deployment of Implementation 3 on Multiple PCs

:Screens

:Computations

:Reporting

:DBMS

TCP/IP

TCP/IP

Windows PCs

Server

Sample TPM’s:
• Operator response time to commands < 3 sec
• Results of computation are presented in 20 sec
System-level TPMs:
• Have to be allocated to nodes
Reviews have to track the allocated TPMs:
• The end-to-end, system-level TPM includes

performance on the node and on the network

Deployment of Implementation 2 using Multiple PCs

:Computations

:Reporting

:DBMS

TCP/IP TCP/IP

Multiple Windows PCs

Server

:Screens



Slide 16GSAW 2004 – ACE2 Breakout Session – Peter Hantos

Conclusions

• Architecture-driven considerations are essential in carrying out 
successful software technical reviews

• MIL-STD-1521B is inadequate as the basis for design reviews
• Understanding of object-oriented methodologies is critical in 

planning software technical reviews
• Functional Decomposition will not provide Requirements 

Traceability
• In-process reviews must track allocated TPMs
• The Configuration Item concept is not supportive of modern 

development practices



Slide 17GSAW 2004 – ACE2 Breakout Session – Peter Hantos

Acronyms and Abbreviations

CDR Critical Design Review 
CI Configuration Item 
CONOP Concept of Operations 
COTS Commercial Off-the-Shelf 
CSC Computer Software Component 
CSCI Computer Software Configuration Item 
CSU Computer Software Unit 
DBMS Database Management System 
DoD Department of Defense 
HWCI Hardware Configuration Item 
MIL Military 
OO Object-Oriented 
ORB Object Request Broker 
PC Personal Computer 
PDR Preliminary Design Review 
SCM Software Configuration Management 
SSR Software Specification Review 
STD Standard 
TCP/IP Transmission Control Protocol/Internet Protocol 
TPM Technical Performance Measurements 

 



Slide 18GSAW 2004 – ACE2 Breakout Session – Peter Hantos

References
[1]  Booch, G., Rumbaugh, J., and Jacobson, I., “The Unified Modeling

Language User Guide”, Addison Wesley Longman, Inc., 1999

[2]  Barry, B., “Spiral Development: Experience, Principles, and
Refinements”, CMU/SEI-2000-SR-008

[3]  Clements, P. C., “Active Reviews for Intermediate Designs”,
CMU/SEI-2000-TN-009

[4]  Kruchten, P., “The Rational Unified Process – An Introduction”,
Addison Wesley Longman, Inc., 1998

[5]  Smith, J., “The Estimation of Effort Based on Use Cases”,
www. rational.com, Rational Software, 1999



Slide 19GSAW 2004 – ACE2 Breakout Session – Peter Hantos

Contact Information

Peter Hantos
The Aerospace Corporation
P.O. Box 92957-M1/112
Los Angeles, CA 90009-2957
Phone: (310) 336-1802
Email: peter.hantos@aero.org



Slide 20GSAW 2004 – ACE2 Breakout Session – Peter Hantos

Backup Slides



Slide 21GSAW 2004 – ACE2 Breakout Session – Peter Hantos

Refresher: MIL-STD-1521B Characteristics

• Assumes Waterfall Development Model
• Assumes Functional Decomposition of Requirements
• Top-level system building blocks are configuration items:

– HWCI – Hardware Configuration Item
– CSCI – Computer Software Configuration Item

• High-Level Design == Architecture
• Hardware-software development processes are clearly separated:

– Design trade-offs only on systems engineering level
• Clearly positioned, formal milestone reviews 



Slide 22GSAW 2004 – ACE2 Breakout Session – Peter Hantos

Computer Software Configuration Items

• Definition of CSCIs (DOD-STD-480): 
– SW that is designated by the contracting agency for configuration 

management
• Structural Breakdown of CSCIs:

– CSC (Computer Software Components)
• CSU (Computer Software Units)

• Granularity of CSCIs:
– Coarse, typically 7-8 CSCIs even in large systems

• Static View of Software:
– Assumes unchanging configuration entities across the life cycle:

Design Source Code Developmental Executables Delivered Executables



Slide 23GSAW 2004 – ACE2 Breakout Session – Peter Hantos

More on Functional Decomposition

• Functional Decomposition is misused:
– Its purpose is to understand and communicate system requirements

and NOT synthesis (allocation of sub-functions to solution structures)
– It doesn’t provide complete Requirements Traceability

• Functional Decomposition has to be a multi-level process:
– On each level we describe the required behavior, and
– Trying to find a solution to implement it before deciding whether the 

behavior on the next level needs to be refined
• In OO the equivalent activity is Analysis
• In OO functional requirements are documented via Use Cases 



Slide 24GSAW 2004 – ACE2 Breakout Session – Peter Hantos

Analysis is NOT Design or Implementation
• Analysis:

– “Rough sketch” of the system
– Description of the system in the application domain
– Helps us to refine and understand functional requirements
– Lets us reason about the internals and internal resources

• Design:
– Allow us to shape the architecture that satisfies all, functional and

non-functional requirements
– Design is a refinement of analysis

• Implementation:
– Creation of the system in terms of components, such as source 

code, scripts, binaries, executables, etc.
– Component testing
– System integration

• All three have to be considered for complete Requirements 
Traceability



Slide 25GSAW 2004 – ACE2 Breakout Session – Peter Hantos

Architectural Layer Dependencies Example

SystemSystem

Java 
Applet

Java Virtual 
Machine

Web 
Browser

TCP/IP

Application-specific layer

Middleware layer

Application-general layer

System-software layer

Subsystem1 Subsystem2

Note that the topology of the architecture is not a tree-structure anymore


