
© 2004 The Aerospace Corporation.  All Rights Reserved.

Breakout Session 10A
Architecture-Centric Evolution & Evaluation (ACE2) 

of Software-Intensive Systems

Chair
Dr. Sergio Alvarado

The Aerospace Corporation

Committee
Daniel Dayton, Suellen Eslinger, Dr. Peter Hantos, Myron Hecht, 

Karen Owens, Dr. Phillip Schmidt, and L. Robert Varney
The Aerospace Corporation

Dr. Thomas Alspaugh, John Georgas, and Scott Hendrickson
Institute for Software Research, UC Irvine



2

ACE2 Session Goals

• Promote central role of software architecture during 
acquisition/development of software-intensive systems

Improved responsiveness to changes in requirements and complexity
Early identification of flaws
Streamlined system implementation, testing, and maintenance 

• Explore how to specify and evaluate software system 
architectures that support software system evolution 

Techniques for software architecture representation
Tools for software architecture analysis
Software system architecting practices, standards, and policies 



3

ACE2 Session Discussion Baseline

1. Architecture as a Basis for Understandability 
Provide views of software system with levels of granularity appropriate for 
each stakeholder (acquirer, overseer, developer, tester, and operator) to 
have insight into system functionality

2. Architecture as a Basis for Assessing Maintainability 
Link requirements to system implementation so that stakeholders can assess 
degree of system change and cost/schedule impact from upgrading,
changing, and integrating COTS products used in implementation

3. Architecture as a Basis for Assessing Extensibility 
Link requirements to system implementation so that stakeholders can assess 
degree of system change and cost/schedule impact from new requirements 
on system size, complexity, environments, services, and interoperability 

4. Architecture as a Basis for Assessing Executabilty 
Support development of executable models so that stakeholders can assess 
impact of new requirements on system performance and reliability



4

ACE2 Session Agenda

• First Segment (13:00 – 15:00)
Lt. Col. Laura Pope, Air Force Space and Missile Systems Center
Dr. Joel Sercel, MILSATCOM Joint Program Office
Dr. Linda Northrop, Software Engineering Institute
Dr. Peter Hantos, The Aerospace Corporation
Discussion and formulation of findings

• Second Segment (15:15 – 17:00)
Capt. Bryan Berg, Air Force Space and Missile Systems Center
Peter Shames, Jet Propulsion Laboratory
Jim Boegman, Raytheon
Dr. Allen Nikora, Jet Propulsion Laboratory; Myron Hecht and Douglas 
Buettner, The Aerospace Corporation 
Discussion and formulation of findings



5

Lt. Col. Laura Pope:
ACE2 Opening Statement

• Why does the Government care about migrating to an architecture-
centric evolution and evaluation of software-intensive systems? 

Understandability
– CONOPS not fully mature at the start of software design
Extensibility/Executability
– Changing interfaces, new requirements, changing CONOPS
Maintainability
– Architecture design does not adequately consider O&M costs 

• Create & document architecture-centric views of software-intensive 
system up-front

Fully coordinate them with all system stakeholders
Keep them current.



6

Dr. Joel Sercel:
Architecture as a Tool for Managing Change

• Architecture is a set of constraints on designs
Effective constraints define effective architecture
C4ISR useful but not necessary nor sufficient

• Architecture necessary for managing change
Defined early in the product development life cycle
Maintained as collaborative product of software IPT



7

Dr. Linda Northrop:
Architecture Business Cycle Ensuring Product Qualities

• The architecture must be descriptive and prescriptive

• Quality attribute requirements drive the software architecture
Examples: Understandability, Maintainability, Extensibility, Executability …
SEI has methodology/tools for defining quality attributes

• Architecture-centric activities drive software system life cycle
Explicit focus on quality attributes
Directly involve stakeholders



8

Dr. Peter Hantos:
Software Reviews Since Acquisition Reform – Architecture-Driven Considerations

• Architecture-driven considerations essential in carrying out reviews
MIL-STD-1521B is inadequate as the basis for design reviews

• Object-oriented methodologies critical in planning reviews
Configuration Item concept not supportive of development practices

• In-process reviews must track allocated Technical Performance 
Measurements



9

Capt. Bryan Berg:
COBRA Architecture

• COBRA=COTS-Based Real-Time Architecture
Based on COTS to minimize cost and maximize functionality
COTS chosen for “best in class”
Architectural decisions based on system risk

• Lessons Learned
Maintenance: Upgrades limited because of hardware/software compatibility 
Extensibility: Older products cannot be upgraded cost effectively
Way Ahead:Use standardized interfaces to avoid compatibility problems



10

Peter Shames:
Reference Architecture for Space Data Systems (RASDS)

• RASDS provides architectural view of end-to-end data systems

• Understandability
Provides insight into functionality and relationship among elements so that 
complexity may be managed

• Maintainability
Supports allocation of functionality, design trades, deployment trades, and 
analysis of impact of requirements changes

• Extensibility
Provides the means to describe and reason about system and component 
size, complexity, performance, and operating environments

• Executability
It is possible to model system behavior at a coarse level of granularity



11

Jim Boegman:
Raytheon (NPOESS) Perspective on Software Architecture

• Spectrum from architecture to implementation
Requirements describe the spectrum

• Software architecture
Understandability
– Different views enable comprehension at appropriate level of detail
Maintainability/extensibility/executability
– Architecture alone not enough to assess cost/schedule impacts



12

Dr. Allen Nikora, Myron Hecht, & Douglas Buettner:
Software Reliability Measurement

• Reliability-centric process
Software reliability important to determine software release schedule 
Reliability estimated from testing results

• Architecture not a good predictor of software reliability

• Reliability a good indicator of good architecture



13

ACE2 Session Summary

• Central role of software architecture in understandability
Define, create, document, and keep current architecture-centric views
Directly involve all stakeholders

• Standards needed to support reviews

• Open question: How to specify architecture to address 
maintainability, extensibility & executability

Develop up-front stakeholder agreement on views and requirements on illities
Define domain-specific reference architectures
Use architecture in conjunction with other tools/models (e.g., reliability 
models) 

• GSAW should continue supporting ACE2 discussion
Gain insight why/how to develop descriptive and prescriptive architectures


