

Stephen A. Book

Chief Technical Officer MCR Federal, LLC 390 No. Sepulveda Blvd. El Segundo, CA 90245 (310) 640-0005

Prepared for Breakout Session 10E: Ground System Costs

Ground Systems Architecture Workshop

The Aerospace Corporation El Segundo, CA 31 March 2004

- Software: Facts and Fictions
- COTS: It's Not Spelled "F-R-E-E"
- GFE: It's Not Free Either
- Impact of Correlation on Probable Cost
- Summary

- Software: Facts and Fictions
- COTS: It's Not Spelled "F-R-E-E"
- GFE: It's Not Free Either
- Impact of Correlation on Probable Cost
- Summary

- Standard Cost-Estimating Paradigm for Hardware is not Applicable to Software
 - Software Requirements Cannot Be Fully Captured in Any Finite List: True List of Requirements Is Virtually Infinite
 - Software Development Is Uniquely Personnel-intensive: Even Within Same Company or Workgroup, Productivity May Vary As Much As 100 to 1 Among Programmers
 - Programming is the Easy Part Figuring Out a Software Solution to the Technical Problem is What's Difficult
- There Are No "Technical" Characteristics Such As Weight, Power, etc., that Play the Role of Cost Driver
 - Primary "Measurable" Cost Driver is Number of Lines of Code, which is Notoriously Difficult to Estimate
 - Naval Center for Cost Analysis Found Average Lines-of-Code Growth of 63% for Software Projects of Various Types (http://www.ncca.navy.mil/software/handbook/software.htm)

		1		
DATA SOURCE	MISSION PURPOSE	ESTIMATED SLOC*	ACTUAL SLOC*	GROWTH FACTOR
AF Space	C ²	618,000	709,000	1.15
Projects:	C ²	23,599	25,814	1.09
	C ²	14,000	70,143	5.01
	Testing	41,800	46,303	1.11
	Software Tools	45,000	45,000	1.00
	C ²	39,294	119,400	3.04
	C ²	22,000	30,000	1.36
	Signal Processing	15,500	26,513	1.71
	C ²	100,000	122,000	1.22
	Mission Planning	532,000	877,129	1.65
Navy	C ²	206,650	394,309	1.91
Projects:	C ²	74,000	82,930	1.12
	C ²	213,800	261,800	1.22
4	C ²	153,000	185,000	1.21
	C ²	83,900	108,850	1.30
*	C ²	1,246,272	1,272,200	1.02

Reference: Naval Center for Cost Analysis, "Software Development Estimating Handbook, Phase One," 1998.

^{*} Source Lines of Code

Lines-of-Code Estimating Risk for Satellite Ground Stations

- Software: Facts and Fictions
- COTS: It's Not Spelled "F-R-E-E"
- GFE: It's Not Free Either
- Impact of Correlation on Probable Cost
- Summary

COTS Software

- COTS is an Attractive Addition to a Ground-System Cost Estimate
 - It Looks Inexpensive
 - It's Politically Correct
 - It's a "New Way of Doing Business"
- But, in Order to Really Incorporate COTS Software into the System ...
 - The COTS Software Has to be Thoroughly Tested for Situations in which It May Act Erratically or "Crash" the System
 - Integration ("Glue") Code Has to be Written and Tested
 - Non-COTS Portion of System Often Has to be Designed Suboptimally to Accommodate COTS

Title Chart of U.K. MoD COTS Software Study Briefing

Air Projects

SPS/CF smart solutions for SMART problems

Jim Armstrong Bob Anderton

David Frankis David Saddleton

John Taylor Dave Thombs

Can You Afford COTS Software? (The MOD SOUP Study)

Potential COTS Software Users Must **Validate These Characteristics***

To adequately assess the safety of SOUP, it must be validated for each of the following types of potential cause of software related hazard (called *evidential requirements*):

- i. Normal functionality – coverage of requirements for functionality;
- ii. Exceptional functionality – error signalling and handling;
- iii. Architectural build configuration – version control of installations;
- Set-up configuration procedures for initialisation and start-up; iv.
- Algorithmic sufficiency type-safety and accuracy; V.
- vi. Timing:
- vii. Memory Usage – predictability of storage use;
- viii. Availability;
- ix. Functional independence – isolation of critical from non-critical functions;
- Soundness extra safety requirements due to chosen implementation strategy; X.
- Interface security protection from misuse; xi.
- Robustness continued service under stressful conditions; xii.
- xiii. Vicelessness – safe service under stressful conditions.

*Reference: D. Frankis and J. Armstrong, "Software Reuse in Safety-Critical Applications, Summary Final Report," U.K. Ministry of Defence, Defence Procurement Agency, Crown Copyright 2001, pages 5-6.

U.K. MoD-Recognized Practices in Testing Software Characteristics*

- i. Common practice: the method is generally accepted and in common use for safety assessment.
- ii. Uncommon practice: the method is mature and well tested but not often used.
- iii. New practice: the method is beginning to be established, but the likely long term attitude of assessors is as yet unclear.
- iv. Speculative practice: the method is the subject of academic research only and assessors are very unlikely to require it in the short term; in the longer term it may become part of best practice.

^{*}Reference Cited, pages 6-7.

U.K. MoD-Recommended Testing*

EVIDENTIAL REQUIREMENT	Black Box Assessment	Code Assessment	Open Box Assessment
a. Normal Functionality	Common Practices: Scenario-based Testing Examine	N/A	N/A
	User Manuals New Practices: Field Trials Lab Simulation		
	Common Practices:	Common Practices:	Common Practices:
b. Exceptional Functionality	Stress Testing Scenario-based Testing Domain Testing Error Guessing	Code Walkthrough New Practices: Language Subset Analysis	Domain Testing Stress Testing New Practices:
	Examine User Manuals New Practices: Field Trials Lab Simulation Speculative Practices: Random Testing		Fault Injection Uncommon Practices: Assertion Testing
c. Build Configuration	N/A	Common Practices: Code Walkthrough	N.B. A bespoke build may be feasible.
d. Set-up Configuration	Common Practices: User Manuals New Practices: Field Trials Speculative Practices: Accelerated Life Testing	Common Practices: Code Walkthrough	Common Practices: Coverage Matrix Testing

EVIDENTIAL REQUIREMENT	Black Box Assessment	Code Assessment	Open Box Assessment
	Common Practices:	Common Practices:	Common Practices:
	Stress Testing	Code Walkthrough	Stress Testing
e. Algorithmic	Domain Testing	New Practices:	Domain Testing
Sufficiency	Error Guessing	Language Subset Analysis	Coverage Testing
55	New Practices:	Uncommon Practices:	Uncommon Practices:
	Statistical Testing	Control Flow Analysis	Assertion Testing
	Speculative Practices:	Data Flow Analysis	Symbolic Execution
	Random Testing	Semantic Analysis	Speculative Practices:
	Accelerated Life Testing	Translation	Exhaustive Testing
		Speculative Practices:	
		S/W Fault Tree Analysis	
		Partial Correctness Proof	
		Termination Proof	
		Refinement	
		Proof	
		Retrospective Specification	
	Common Practices:	Common Practices:	Common Practices:
	Stress Testing	Code Walkthrough	Stress Testing
f. Timing	Scenario-based Testing	Uncommon Practices:	Coverage Testing
, 0	New Practices:	SCA Control Flow Analysis	Speculative Practices:
	Field Trials		Exhaustive Testing
	Lab. Simulation		
	Common Practices:	Common Practices:	Common Practices:
	Stress Testing	Code Walkthrough	Stress Testing
g. Memory Usage	Error Guessing	New Practices:	Speculative Practices:
		Language Subset Analysis	Exhaustive Testing

SPECIALIST PROCUREMENT SERVICES

EVIDENTIAL REQUIREMENT	Black Box Assessment	Code Assessment	Open Box Assessment
h. Availability	Common Practices: Safety Target Setting New Practices: Statistical Testing Speculative Practices: Accelerated Life Testing	N/A	N/A
i. Functional Independence	N/A	Common Practices: Code Walkthrough Uncommon Practices: Data Flow Analysis Source Code Architecture	Common Practices: Coverage Testing Uncommon Practices: Assertion Testing Speculative Practices: Exhaustive Testing
j. Soundness	N/A	Common Practice: Code Walkthrough Complexity Measurement New Practices: Language Subset Analysis Uncommon Practices: Translation Control Flow Analysis Data Flow Analysis Semantic Analysis Speculative Practices: S/W Fault Tree Analysis Refinement Proof	Common Practice: Domain Testing Coverage Testing Uncommon Practices: Assertion Testing Speculative Practices: Exhaustive Testing

EVIDENTIAL REQUIREMENT	Black Box Assessment	Code Assessment	Open Box Assessment
	Common Practices:	Common Practices:	Uncommon Practices:
k. Interface Security	Stress Testing	Code Walkthrough	Assertion Testing
<i>y</i>	Domain Testing		
	Error Guessing		
	New Practices:		
	Lab. Simulation		
	Speculative Practices:		
	Random Testing		
	Common Practices:	Common Practices:	Common Practices:
l. Robustness	Stress Testing	Code Walkthrough	Coverage Testing
	Domain Testing	Complexity Measurement	New Practices:
	Error Guessing	New Practices:	Fault Injection
	Speculative Practices:	Language Subset Analysis	Uncommon Practices:
	Random Testing	Uncommon Practices:	Assertion Testing
		Control Flow Analysis	Speculative Practices:
		Data Flow Analysis	Exhaustive Testing
		Speculative Practices:	_
		S/W Fault Tree Analysis	
		Termination Proof	
	Common Practices:	Common Practices:	Common Practices:
	Scenario-based Testing	Code Walkthrough	Stress Testing
m. Vicelessness	Error Guessing	New Practices:	Uncommon Practices:
	New Practices:	Lang. Subset. Analysis	Assertion Testing
	Statistical Testing		Fault Injection
	Lab. Simulation		Speculative Practices:
			Exhaustive
			Testing

Cost Estimates of COTS Software Testing Activities* (Chart 1 of 2)

Method	Elementary component	Size (man- days)	Limit on no of components	Number of components	Cost	Quality of estimate
Scenario based testing	One scenario	10	Number of operational procedures	100 – 1000	Medium	С
Field trials	One trial	1000	Availability of facilities	10 – 100	Medium	С
Lab simulation	One run	10		1000	Medium	С
Examine User Manuals	_	100 (total)	-	-	Low	С
Random Testing	One run	.01	Input space size	$10^6 - 10^8$	Medium to high	С
Error guessing	One run	10		100	Medium	С
Accelerated life testing	One run	10	Number of setup states	100	Medium	С

*Reference Cited, pages 19-20.

Cost Estimates of COTS Software Testing Activities* (Chart 2 of 2)

Method	Elementary component	Size (man- days)	Limit on no of components	Number of components	Cost	Quality of estimate
Statistical testing	Define runs (once); One run	10; 0.1	Weighted size of input space	$10^6 - 10^8$	High	С
Safety target setting	Once	10-100	-	1	Low	В
Domain testing	One domain	1	No of equivalence partitions in critical functions	$10^3 - 10^6$	Medium	С
Stress testing	One run	10	Number of hazards/ways of stressing the system	10-100	Low	С

UK MoD's Notional Comparison of Costs of Bespoke* Software vs. SOUP**

* i.e., Fully Understood **COTS

- Software: Facts and Fictions
- Reality Checks: Are They Useful?
- COTS: It's Not Spelled "F-R-E-E"
- GFE: It's Not Free Either
- Inter-element Correlation: Its Impact on Probable Cost
- Comparing Competing Proposals on the Basis of Risk
- Summary

GFE: A Great Way to Reduce Ground-System Cost Estimates

- ... but Not Necessarily Ground-System Costs
- GFE = Government-Furnished Equipment
- GFE is a Popular "Code Word" that Contractors (and Government Project Managers) Use to Lower the Proposed Cost of a Program
 - It is Advertised to Do the Job
 - It is Low-Cost or Sometimes Even No-Cost
 - GFE is Usually Free to the Proposer, so It Adds Zero to his Bid (and to the required budget)

It Even Seems to Make Sense Sometimes

- Ground-System Hardware (e.g., Computers, Antennas, Communications Capability) are Often Available as Unused Spares from Earlier or Partially Completed Programs
- Ground-System Software (e.g., for Testing, Data Management, Communications) Has Often Been Written to do the Same or a Similar Task on Another Government Program

- GFE is a Trap Set for the Government
 - It's Free to Proposer, so It Doesn't Appear in his Bid
 - That Means the Government Assumes the Obligation to Deliver that Portion of System
 - Most Often, However, GFE Does Not Do Job Anticipated
- If Government Accepts the Proposal and then GFE Fails to Perform, then ...
 - ECPs (Engineering Change Proposals) are Written to Task the Contractor to Develop Substitute Hardware and/or Software
 - Government Incurs Additional Costs Beyond the Bid Amount (even if there is no overrun on what was bid!)
 - Situation is Typically Written Off as an Increase in Government Requirements (but it really isn't), so the Additional Cost is Deemed Justified
 - What Really Happened, Though, Was that the Contract Shifted a Portion of the Program's Risk to the Government

- Software: Facts and Fictions
- COTS: It's Not Spelled "F-R-E-E"
- GFE: It's Not Free Either
- Impact of Correlation on Probable Cost
- Summary

- Resolving One WBS Element's Risk Issues by Spending More Money on It Often Involves Increasing Cost of Several Other Elements as Well
 - For Example, Technical Risks in Radar Subsystem Will Tend to Induce Weight (and therefore) Cost Growth in Power, Platform, Software, and Other Subsystems
 - Schedule Slippage Due to Problems in One WBS Element Lead to Cost Growth in Other Elements ("Standing Army Effect")
- Numerical Values of Inter-WBS-Element Correlations are Difficult to Estimate, but That's Another Story

- Difficulties in Meeting Original Specifications for Space Vehicle's Bus and Payload Tend to Induce Requirements Changes (and new costs) in Ground **System**
 - Resolving Technical Risks in Spaceborne Observing System Often Involves Adjusting Analysis and Data Base Software on Ground
 - Schedule Slippage in Space Vehicle Production or Launch Forces Delays in Ground-System Testing and Final Checkout
 - Satellite Hardware Problems Discovered Late in Program Often Have to Be Circumvented by Making Expensive Lastminute Fixes to Ground-System Software
- As We Will Soon See, Inter-Element Correlation **Tends to Increase the Spread of the Total-Cost Probability Distribution**

Variance (σ²) of Cost Distribution Measures Cost Uncertainty

• σ_X^2 Small Means Less Uncertainty

• σ_X^2 Large Means More Uncertainty

Correlation Affects the Variance

- $X_1, X_2, ..., X_n$ are Costs of WBS Elements (Random Variables)
- Total Cost = $\sum_{k=1}^{n} X_k = X_1 + X_2 + ... + X_n$
- Mean of Total Cost = $E\left(\sum_{k=1}^{n} X_k\right) = \sum_{k=1}^{n} E(X_k) = \sum_{k=1}^{n} \mu_k$
- Variance of Total Cost = $Var\left(\sum\limits_{k=1}^{n}X_k\right)$ = $\sum\limits_{k=1}^{n}\sigma_k^2+2\sum\limits_{j=2}^{n}\sum\limits_{i=1}^{j-1}\rho_{ij}\sigma_i\sigma_j$

MCR

Does Correlation Matter?

Suppose for Simplicity

- There are n Cost Elements $C_1, C_2, ..., C_n$
- Each $Var(C_i) = \sigma^2$
- Each $Corr(C_i, C_j) = \rho < 1$
- Total Cost $C = \sum_{k=1}^{n} C_i$

•
$$Var(C) = \sum_{k=1}^{n} Var(C_i) + 2\rho \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \sqrt{Var(C_i)} \ Var(C_j)$$

$$= n\sigma^2 + n(n-1)\rho\sigma^2$$

$$= n\sigma^2 (1 + (n-1)\rho)$$

Correlation	0	ρ	1
Var(C)	$n\sigma^2$	$n\sigma^2(1+(n-1)\rho)$	$n^2\sigma^2$

Yes, Correlation Matters

- Total-Cost Sigma is Underestimated When Inter-Element Correlations are Assumed to be Zero
- The Graph Shows the Percent Underestimation When Correlation Assumed to be 0 Instead of ρ

- Software: Facts and Fictions
- COTS: It's Not Spelled "F-R-E-E"
- GFE: It's Not Free Either
- Impact of Correlation on Probable Cost
- Summary

- Software Cost Overruns and Schedule Slips are Almost Routine due to ...
 - Inability to Define Requirements Precisely Up Front
 - Tendency to Underestimate Lines of Code Needed to Implement Software Solution
 - Ineffectiveness of Lines of Code (or anything else) as a Software Cost Driver

The COTS Conundrum

- Lack of Insight into Details of COTS Software Necessitates
 Very Thorough Testing
- Integration and Testing Costs May Outweigh Acquisition Savings

The GFE Trap

- Proposal Obligates Government to Delivering Portions of System
- GFE Often Fails to Meet Expectations, Necessitating ECOs and Actual, if not Official, Cost Overruns

Correlations Between Risks

- Correlations Increase Uncertainty in Total Cost
- Ignoring Correlation Narrows Cost Distribution Unrealistically