Architecture-Level Ground Processing System Investment Model

Systems Architecture, Engineering and Cost Group

The Aerospace Corporation

15049 Conference Center Drive, CH1-410 Suite 600 Chantilly, VA 20151 E-mail: raymond.p.covert@aero.org

Copyright © 2004 The Aerospace Corporation

Agenda

- Introduction
- Ground System Cost Estimating Models
- Cost Analysis Issues of Ground Processing Systems
- Technology Maturity
- Developing an Architecture-Level Model
- How the Model Works
- Summary
- References

Introduction

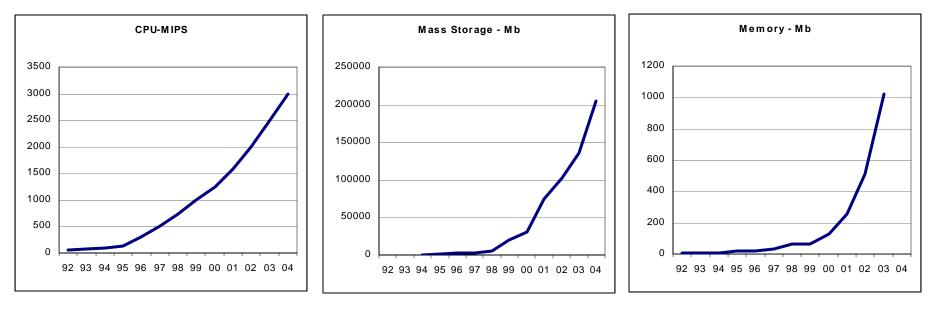
- Need for a budget estimating model for future ground processing systems (10-20 years in future)
- Model to be used for Architecture-level trades
 - System details not defined yet **VERY TOP LEVEL**
 - Current cost estimating methods required too much detail and modeling to be practical for this application
- Model must be able to forecast processing and communications share expenditures based on:
 - Several types of spacecraft, *i*
 - Number and type of spacecraft, Ni
 - Activation date (*Tai*) and de-activation date (*Tdi*)
 - Historical processing efficiencies and expected future efficiencies
 - Commercial best practices in processing and communications

Top Level Model for Budgets Required

Ground System Cost Estimating Models

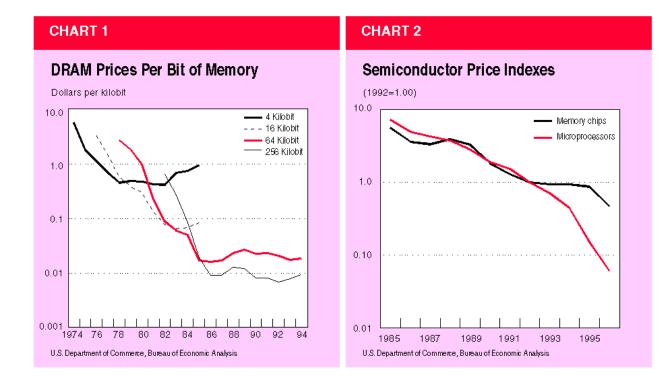
- Several ways ground cost modeling is performed
 - Grass roots approach
 - Buildup by software, hardware and common services
 - Use of SEER, PRICE, COCOMO-II, HW Pricing forecasts, wrap factors
 - Development Models (Command & Control and Antenna Terminal)
 - Ground Cost Model (G-COST) [Ref. 1,2]
 - Fixed and Transportable Earth Station (FATES), Cost Estimating Relationships (CERs) and Cost Libraries [Ref.3]
 - Operations Models (Operations and Maintenance)
 - Mission Operations Cost Model (MOCM) and Space Operations Cost Model (SOCM) - NASA
- Pitfalls
 - Require a more detailed knowledge of ground station parameters than is typically known at the architecture planning level
 - Typically do not model mission data processing costs well

Current Cost Estimating Methods Inappropriate


Cost Analysis Issues of Ground Processing Systems

- Some ground processing systems are continuously **evolving**
 - Developed years ago
 - Continuously upgraded to handle increased satellite and mission capabilities
 - Consolidation of multiple processing sites into single site
- Difficult to develop useful cost models from the cost data
 - Obtaining "clean" actual costs
 - Establishing technology baseline to cost
 - Using historical data to predict future growth
- How do we handle things like
 - Technology Maturity?
 - Performance vs. Year for data providers (satellites) and processing systems
 - Cost vs. Year for hardware and software
 - Processing requirements based on constellation design?

Technology Maturity: Performance vs. Year


- Processor speed doubling approximately every 18 months
- Similar trends in chip memory and storage technology [Ref. 4-6]

Technology Maturity: Cost vs. Year

Processor and Memory Costs are Going Down

Developing an Architecture-Level Model

- Examined ground processing requirements vis-à-vis satellite downlink message traffic
 - If we add more satellites
 - If we use different mixes of satellites in our constellation
 - Found historical processing requirements increasing exponentially
- Examined budget actuals for customer processing and communications (1997-present)
 - Processing budget requirement increases approximately 5.7%/yr
 - Communication budget data shows similar trend
- Examined how our ground processing systems have evolved with new, more capable satellites in the constellation
 - Compared these actuals with historical processing metrics for same time period and found:
 - Processing traffic increases approximately 100%/yr
 - Communications bandwidth increases approximately 100%/yr
 - Compares well with commercial communications and processing experience

How the Model Works

Model Data

- User defines message traffic by satellite type
 - Model requires investment rate and growth rates of processing and communications
 - Model uses trending data to compute cost per processing and communications units

	Sat Type	Message BW
	<none></none>	0
	A	5000
	В	10000
	С	50000
→	D	100000
	E	500000
	F	1000000
	G	500000
	•	000000

Historical		
Basis Year		2000
Processing Investment per year		10,000,000.00
Processing Investment rate per year		5.7%
Processing volume rate per year		100.0%
Basis Message Rate, MpD		4500
Basis message cost, MpDpYr	\$	0.00045
Comunications Investment	\$	5,000,000.00
Communications Investment rate		5.0%
Communications BW rate		100.0%
Communications Basis BW, GBps		10
Basis Comm Cost	\$	0.0000020

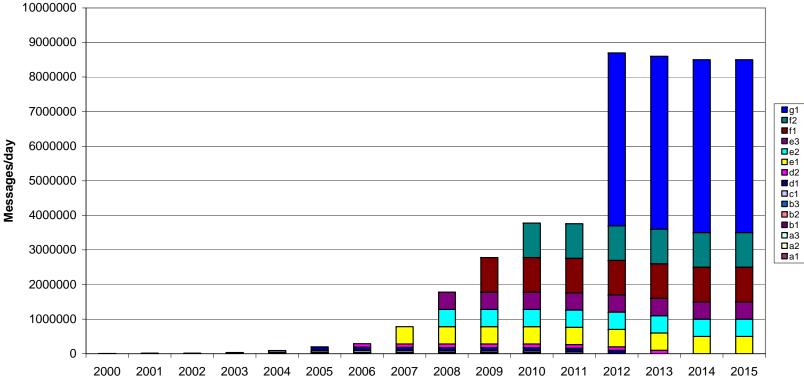
Defining Architecture

- User defines number of satellites by type, activation year and de-activation year
- Model uses database to lookup message traffic per satellite

Satellite ID	Sat Type		Message BW	Activation Yr	Deactivation YR
a1	A	-	5000	2000	2005
a2	A	•	5000	2001	2006
a3	A	•	5000	2002	2007
b1	В	•	10000	2003	2010
b2	В	•	10000	2003	2010
b3	В	•	10000	2004	2011
c1	С	•	50000	2004	2011
d1	D	•	100000	2005	2012
d2	D	•	100000	2006	2013
e1	E	•	500000	2007	2015
e2	E	•	500000	2008	2016
e3	E	•	500000	2008	2016
f1	F	•	100000	2009	2019
f2	F	•	1000000	2010	2020
g1	G	•	500000	2012	2022

Example Constellation: 7 Satellite systems: 2000-2022 Increasing capabilities over time

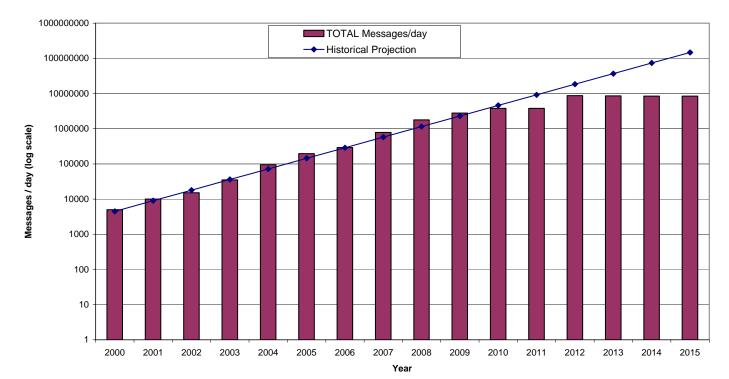
- •Existing/ In development
- •Replacement System
- •New Systems


FICTITIOUS EXAMPLE ONLY

Message Traffic Trend

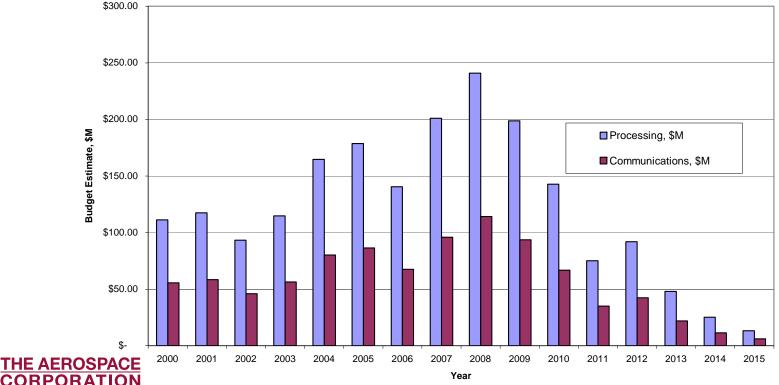
Model generates message traffic trend

Message Traffic by Satellite

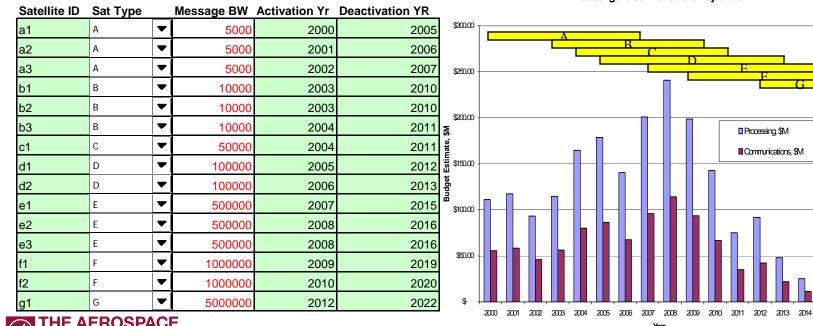


Message Traffic Trend (2)

 Model compares historical growth (fixed to investment rate) with anticipated growth due to architecture definition



Architecture Message Traffic


Budget Results

- Model develops processing and communications budget based on trend data and anticipated need based on:
 - Number and type of spacecraft, Ni
 - Activation date (*Tai*) and de-activation date (*Tdi*)
 - Historical processing efficiencies and expected future efficiencies Processing and Communications Projections

Model Results Summarized

- With the constellations, message traffic, and schedule defined, we find
 - Increased investment is required in the 2004-2008 timeframe when there are 4 active satellite systems
 - Decreased investment in 2010 2015 with 3 active satellite systems

27 April 2004 15

Summary

- We have shown:
 - Very high-level architecture cost tool for ground system processing and communications budget
 - It does not provide breakout beyond budget line item level
 - It is Sensitive to portfolio selection
 - It is Sensitive to commercial and historical cost and technological trends
- Future work
 - A more detailed model that segregates cost by next one or two WBS levels for system design trades
 - Must be able to compute costs for hardware, software, and SEIT/PM.

References

- Sidor, L.B., "G-COST 1.0 Ground Systems Cost Model Demonstration", GSAW99 - Breakout Session 2, Los Angeles, CA, 4 March 1999.
- 2. "G-COST 2.0 Model for SATCOM Ground Terminal Recurring Hardware Cost (Unit T5)," The Aerospace Corporation and MITRE, January 1999.
- 3. Jaffurs, C.Z., et al., "Fixed and Transportable Earth Station (FATES), Cost Estimating Relationships (CERs) and Cost Libraries", TR-001, Prepared for Space Division/ACC, Tecolote Research, Inc., Santa Barbara, CA, April 1985.
- 4. Garrett, B., "Four Forces Shape DRAM Evolution," EE Times, 02/07/2000
- ^{5.} "Status of the Industry", Integrated Circuit Engineering (ICE), 1995.
- ^{6.} "Status of the Industry", Integrated Circuit Engineering (ICE), 1999.

