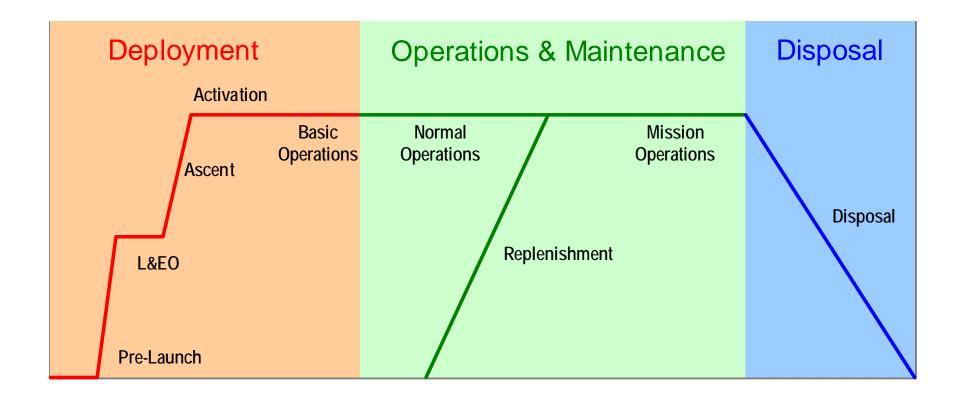
Commercial Practices Applied to Operations and Maintenance of Satellite Constellations

A Ground System Perspective

March 1, 2005

Ahsen Abbasi, James Batt and Mark Bucko

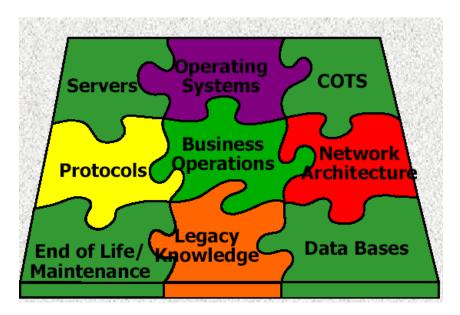


Introduction

Purpose

- Consider operations & maintenance of large constellation-based space systems from a ground system perspective
- ➤ Describe sustainment and obsolescence challenges
- ➤ Show how proven Boeing commercial practices address these challenges to maximize operational effectiveness

Constellation Life Cycle


Constellation Life Cycle

- Deployment
 - ➤ Begins at first launch and ends when last satellite of the mission constellation is activated on-orbit
- Operations & Maintenance (O&M)
 - Begins when full mission functionality is achieved
- Disposal
 - ➤ Begins when constellation reaches the end of its useful life
 - ➤ The goal of disposal is to deplete all on-board energy sources such as batteries and fuel, and limit orbital debris after mission completion by re-entry within 25 years for LEO, or boosting for GEO
- This presentation addresses obsolescence challenges faced in the O&M phase of the constellation life cycle

Obsolescence Factors

- Hardware end-of-life and end-ofmaintenance
- COTS no longer supported
- Increased maintenance costs
- Patches no longer available for operating systems
- New security vulnerabilities that cannot be addressed
- Employee knowledge
- Protocols no longer supported
- Tech support unable to assist in anomaly resolution

Obsolescence Risks

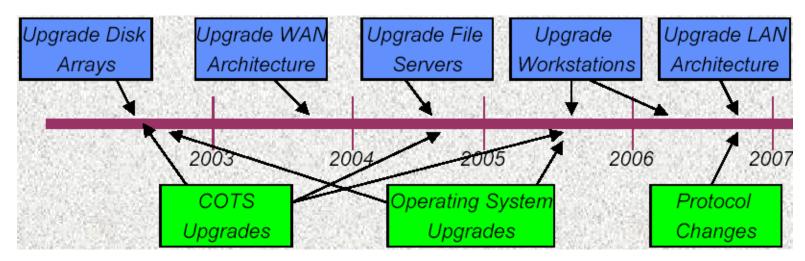
- Anomaly Resolution
 - ➤ Longer outage
 - ➤ Multiple workarounds
 - ➤ Tech support unable to assist
- Spare Parts Availability
 - ➤ High costs
 - ➤ Difficult to find
 - ➤ New HW/ SW compatibility
- Vendor Support
 - ➤ No technical expertise

- Increased Life Cycle Costs
 - Premium maintenance agreements
 - ➤ Increase on time and materials
- Reduced System Availability
 - ➤ Longer outages
 - Cannibalize systems
- Increased Failures
 - ➤ More frequent failures
 - Multiple failures

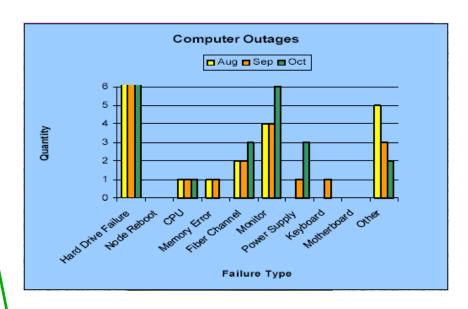
Mitigation Approaches

* Direct

- Planned Updates
- ➤ Spares vs Maintenance
- ➤ Build Repair Depot/Facility
- ➤ Skills Training and Knowledge Capture


Indirect

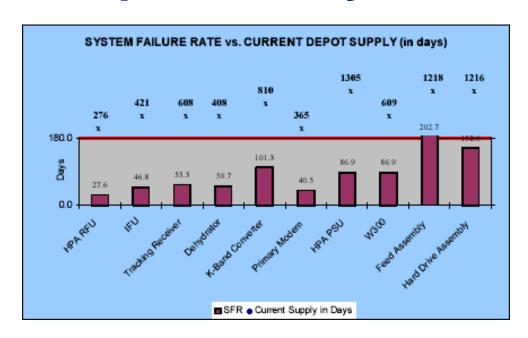
- ➤ Continuous Process Improvement
- Automation


Planned Updates

- Plan for updates during O&M in the development phase of the program
 - ➤ COTS software upgrades
 - > HW upgrades
 - ➤ Planned ground segment incremental software builds

Spares vs Maintenance

- * Document failure rates
- Train in-house team for board level repairs
- Evaluate spares vs maintenance costs
- Consider operating system license implications
- Identify new/used spare parts vendors

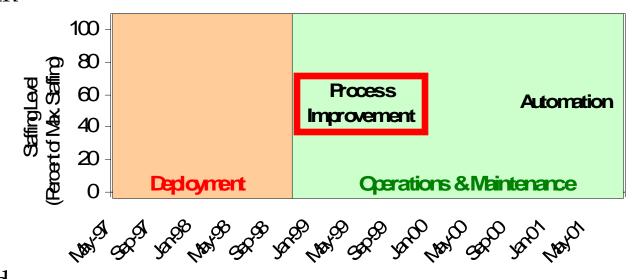


Reduced workstation maintenance costs by over \$500K in one calendar year

Build Repair/Depot Facility

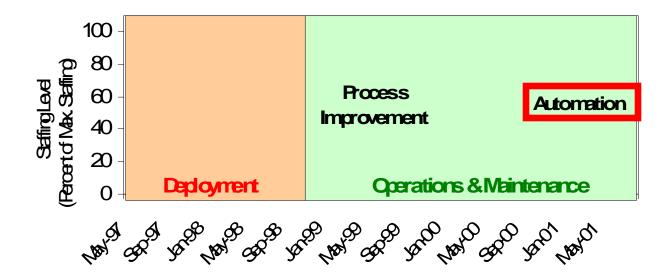
- Evaluate vendor cost for maintenance and time and material
- Trend failure rates
- Define skills requirements
- Consider remote sites
- Estimate cost savings

Over 15 month period, total savings were approximately \$500K


Skills Training and Knowledge Capture

- Maintaining legacy systems
 - > Extensive training on hardware platforms
 - > Extensive training on software products
- * Take as much vendor training as possible
 - ➤ Become the expert in their product
 - ➤ Support contracts may be "right to use" only
- Keep the staff challenged and happy
 - > Training on latest technologies
 - ➤ Job rotations
 - Continuous process improvement initiatives
- * Avoid single points of failure
 - Have more than one expert
 - ➤ Implement a knowledge capture plan to counter effects of attrition
 - Document, document, document
 - Cross-training

Continuous Process Improvement


- Continuous process improvement reduces workload and re-work required, again freeing up personnel to focus on other initiatives such as obsolescence mitigation
- Boeing
 tools/processes can
 be used, e.g. web based crew
 information file,
 web-based issue
 reporting and
 defect resolution
 tool, Operations
 Performance
 Review Board, and
 lesson learned

Automation

* Automation of activities during O&M would reduce staffing requirements and workload for this function, increasing ability of staff to focus on other initiatives such as continuous process improvement and obsolescence mitigation

Dealing with Unplanned Updates

Factors

- ➤ Paid for maintenance agreements include software upgrades
- ➤ New mission functionality
- Changing infrastructure to support new technologies

Issues

- ➤ Compatibility issues with legacy system
- ➤ Power requirements
- ➤ Rack space and environmental specifications
- Sequencing multiple upgrades
- ➤ Staff training for new hardware/software

Conclusion

- There is no single solution for the issues associated with obsolescence, however with proper planning the overall costs can be reduced and system availability and reliability can be increased
- Existing Boeing tools and practices established in the operations of commercial constellations can be applied to address obsolescence risks during operations & maintenance of large constellation-based space assets