

Agenda

- Problem Description
- NG/MS Strategy

Challenges, Decisions & Lessons Learned

- Architectural Development
- Transition Planning
- Cost Model
- Summary & Questions

Problem Description

- 2 contracts to independently study architecture approaches and options
 - > CPFF contracts, 9 months (start 10/03), 4 formal TEMs
 - > Unconstrained Requirements Document (URD)
 - > 100s of reference documents
- Describe the <u>next ground system architecture</u>
 - > <u>next:</u> start in 2010, thru 2020 maintenance thru 2030
 - > ground system: reception of data from signal reception at the ground thru reporting
 - > <u>architecture</u>: DoDAF Operational (OV) & System (SV) views
- Cooperative COTR
 - > OK to go outside of the box
 - > CAIV and traditional funding boundaries
 - > Unconstrained Communication boundaries

Team Strategy

- Six geographically distributed teammates (NJ, VA, CO, CA)
 - > Broad Mission Understanding
 - > Technology Forecasting
- Removed proprietary corporate boundaries
- "War room"
 - > Write it down and put it one the wall
 - > Weekly team TELECONs
 - > Microsoft Sharepoint Portal @
- Bi-weekly reporting
 - > Time
 - > Products
- Develop architectural alternatives
 - > One champion per architecture
 - Several based upon leveraging from current systems
 - One "Unconstrained" Architecture
 - > Compare and contrast
 - > Select (merge) the best that survived

Crystal Ball

Challenge

- > How to envision requirements, CONOP, and the system
- > Go back to the day you graduated college, and think would you have been able to predict todays' technology?

Decision

Focus on System "behavior"

- > Easy to leverage from existing systems or systems being built or acquired (5 years)
- > Harder to get beyond "today" (10+ years)
- > Have lots of white board space
- >"what" v. "how"

Gary Larson -- "What you say and what Spot hears"

Challenge

Almost every technical term and acronym is overloaded

Decision

Write it down

Lesson Learned

So what really is:

Architecture
Service-Based (SBA)
System-of-System (SoS)

- >Don't assume the audience knows what you mean
- >Standardization is a very slow process

"Everything I need to know I learned in kindergarten"

Challenge

- Engineers tend to tightly couple their self worth with their products
- >Finding closure

Decision

- >Unbiased arbitrator
- >Cat herder

- >Play well with others & Check your ego at the door
- >Get gratification from other sources

Cultural Differences

Challenge

NG/MS DSO (f.k.a. TRW) have a culture of lively discussion & debate

- > Recognize the cultural differences
- > Appreciate the cultural differences
- >Lively debate does not always equal disrespect

Niche Expertise

Challenge

Integrate niche domain experience with mission experience

Decision

Augment core team (with lots of mission experience) with niche expertise

- Niche expertise without domain knowledge was not as helpful as we predicted
- > Manage cultural differences

Architectural Evaluation

Challenge

How to compare architectures?

Decision

- > SEI Quality Assessment Workshop (QAW) and ATAM (Architecture Tradeoff Analysis Method) process
- > http://www.sei.cmu.edu/ata/ata_method.html

- > QAW and ATAM worked well, but required significant investment from customer and project engineers
- > Government participation

A Few Important Architectural Tenants

Challenge

What architectural tenants are more important?

- Decision
 - > Keep them small
 - > Try to balance
- Lesson Learned
 - > Encapsulation, Abstraction and Data hiding
 - > Separate system behavior from implementation
 - What we want the system to do
 - How the system will perform the desired activity
 - > Design architecture that was benign to signal source
 - Traditional emphasis on signal source
 - Overabundance of ground resources

As an interesting aside ...

Two teams, two approaches

Interestingly, both teams came up with remarkable similar high level architectures

- Differences in the starting approach (OV vs SV)
- Differences in nuances

the "undiscovered truth" remains undiscovered

Transition Planning

Transition Planning

Challenge

- > Where to start, where to end
- > Define the SoS boundaries
- > Define needed infrastructure & assumptions
- > Legacy data migration

Define the strategy for transition

- What to keep from existing systems
- New system

- > Didn't have the strategy soon enough in the analysis process
- > "Opted" out

Cost Model

What is the future going to cost?

Challenge

Cost the architecture and transition

- > Excel Cost Model
- > Started with legacy models
- > IDEF activity model
 - Input, output, processing & control
 - "black box" approach
- > Peel-the-onion

Lesson Learned

Don't let an engineer (unconstrained) build a cost model

- 14 Worksheets
- 256+ variables to describe the input and environment
- 1200+ variables to describe the architecture

Cost Model

Moore's Law

Challenge

- > Apply Moore's law and technology evolution with respect to cost and capability or performance
- > Could you estimate today's computer technology and cost from the first two computers you bought?

Decision

No consensus on the application of technology evolution

Lesson Learned

Built the model to be able to apply technology forecasting on/off and different rates

IF HISTORY IS ANY GUIDE MOORE'S LAW WILL TRANSCEND CMOS SILICON AND JUMP TO A DIFFERENT SUBSTRATE. IT HAS DONE SO FIVE TIMES IN THE PAST.

Thank you

• Questions?