### Mission Families: a cost effective approach to Mission Control System development



Damiano Guerrucci, Vemund Reggestad, Mario Merri, Pierpaolo Emanuelli

European Space Agency (ESA) European Space Operations Centre (ESOC) Darmstadt, Germany





### Overview

- Reuse strategy at ESOC
- The ESOC Software Infrastructure
- The "Delta" Approach
- Concept of Mission Families
- The Delta Approach applied to Mission Family
- The Earth Explorer mission family
- Conclusions

esa

Ground System Architectures Workshop – Common Solutions

1 🕁 3 Mar. 2005



## **Reuse Strategy at ESOC**

- ESOC approach is to maximize the reuse of:
  - Experience
  - Procedures
  - Software

esa

- Operational Concept
- A large number of ESOC Projects has already applied the software reuse in the context of Mission Control System (MCS)development
- Software Reuse is a strategy for:
  - **Cost reduction**: a small amount of code has to be developed and maintained by a new mission
  - **Risk reduction**: the re-used software has been already validated by previous mission



## Software Reuse Bases

### Design

- Mission control software components expressly designed for reuse (infrastructure components)
- Needs of specific mission designed in a generic way at benefit of other missions
- Harmonisation in the design of spacecrafts in all respects affecting the ground segment

### Use of standards

- Packet TM/TC standards (from CCSDS)
- Packet Utilisation Standard (ECSS)
- Space Link Extension (SLE)
- XML

esa



## ESOC Software Infrastructure

#### The Spacecraft Control and Operations System (SCOS-2000)

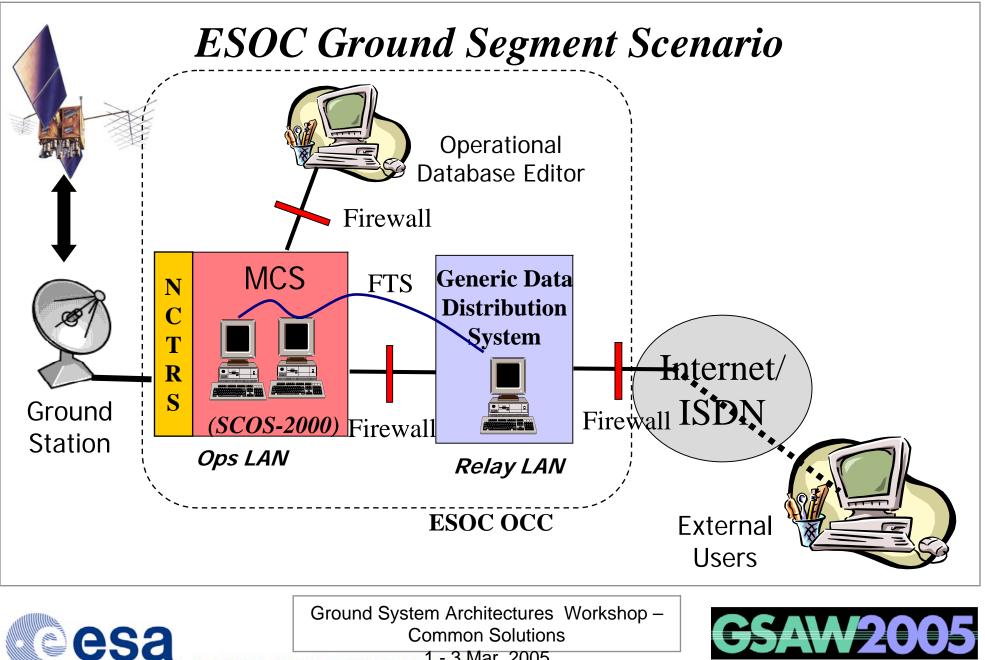
• Based on distributed client-server architecture, it covers generic services for telemetry reception and processing, telecommand uplink and verification, data archiving, display and retrieval.

#### The Network Control and TM/TC Router System (NCTRS)

• Interfaces between MCS and the Ground station network (SLE for non-ESA stations)

#### Generic Data Disposition System (GDDS)

#### Telemetry Data Retrieval Services (TDRS) and WebRM


• Web based interfaces to provide live telemetry and command verification, telemetry retrieval and statistics to external users (e.g. payload owners)

# Other software largely reused, resulting from a generic design on a mission specific need

- File Transfer System (XMM)
- Mission Planning System (Envisat)
- Database Editors (Cryosat)







1 🛖 3 Mar. 2005

## The "Delta" Approach

- MCS requirements are no longer produced in full, but rather as "delta" with respect to the Software Infrastructure (typically SCOS-2000)
  - Slim requirement document quicker to write and review
  - Higher level of detail from an early phase
  - Highlights very clearly where new developments are needed
  - Allows better cost estimation and development risk assessment
- The approach can be extended to rest of the software life cycle
  - Architectural phase: the design is also "delta" with respect to SCOS-2000 and interfaces are, wherever possible, kept untouched
  - Development phase: large part of the software is re-used
  - Testing and validation phase: tests can be focused mainly on mission specific features. Common software is tested concurrently by several missions.
  - Maintenance phase: the SCOS-2000 kernel is maintained under independent arrangements hence minimizing the size of the system that needs to be maintained specifically for each mission

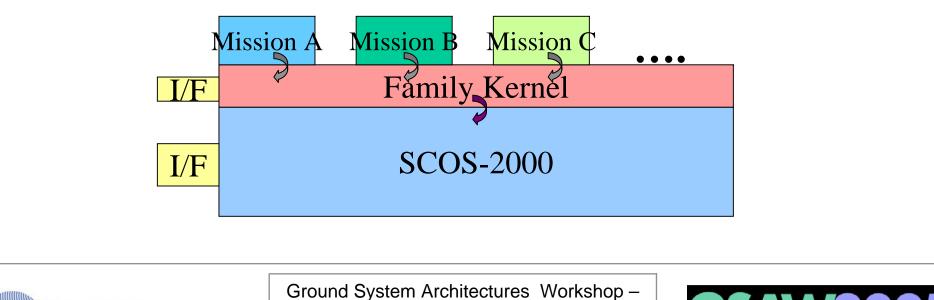


Ground System Architectures Workshop – Common Solutions

1 3 Mar. 2005



### Why Mission Families?


- The Software reuse pushed the need of commonality between spacecrafts
- Missions with a similar profile require the development of similar mission-specific features
- However, these features are not included in SCOS-2000 as they are not generic enough
- They can be grouped into classes that map into well-defined
  "Mission Families" (generic design within a subset of missions)





## **Delta Approach applied to Mission Families**

- Cost saving approach can be now applied twice
- 1. Using the SCOS-2000 infrastructure
- 2. Using the applicable "family kernel" (i.e. common needs within a mission family are grouped in the mission family kernel as a software layer on top of SCOS-2000 infrastructure)



Ground System Architectures Workshop – Common Solutions

3 Mar. 2005



## Mission Families at ESOC

### Earth Explorer mission family

- low earth orbit, short visibility periods
- Planetary mission family
  - long propagation delay, on-board autonomy

#### Observatory mission family

long visibility periods, proposal based observations



Ground System Architectures Workshop – Common Solutions

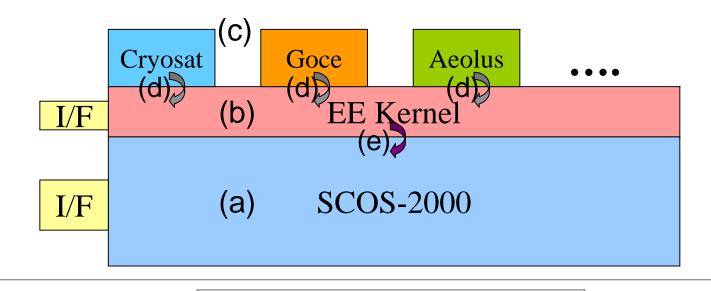
2005



### The Earth Explorer Mission Family Evolution

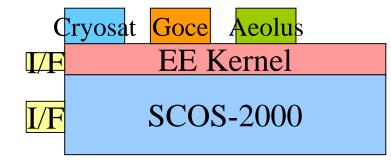
- Cryosat was the first mission for which the "delta" reuse approach was applied (delta against SCOS-2000)
- Goce applied the delta reuse approach against Cryosat, making concrete the definition of the Earth Explorer (EE) Mission Family Kernel
- Aeolus has been defined as delta against the EE Mission Family Kernel
- Each mission would contribute in increasing the Kernel functionalities and the Kernel would contribute in increasing the SCOS-2000 functionalities
- Future missions take benefit of implementation developed by previous (e.g. SWARM)
- Delta approach is applicable along the whole software life (e.g. requirements, design and test documentation)




Ground System Architectures Workshop – Common Solutions

1 - 3 Mar. 2005




### The EE Mission Family Requirements Sets

- a. SCOS2000 Requirements fully reusable by any EE Mission today
- b.EE Kernel Requirements common to all EE missions
- c. Mission Specific requirements (used today only by one mission)
- d.Requirements implemented by mission but common to other EE Missions (candidate for repatriation in EE Kernel)
- e. Requirements implemented as common to the EE Mission family but common to any other family (candidate for repatriation in SCOS-2000)





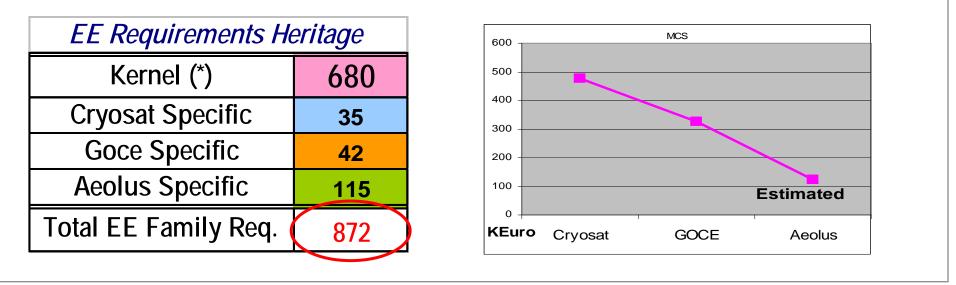
### The EE Mission Family Requirements Definition



esa

The Delta approach allows to distinguish between generic and mission specific req. already at definition phase

| Requirements at Definition Phase | Kernel | Mission<br>Specific | Total |
|----------------------------------|--------|---------------------|-------|
| Cryosat SRD                      | 406    | 35                  | 441   |
| Goce SRD                         | 129    | 62                  | 191   |
| Aeolus SRS                       | 57     | 115                 | 172   |
|                                  | 592    | 212                 | 804   |


Ground System Architectures Workshop – Common Solutions

3 Mar. 2005



### The EE Mission Family Heritage Today

- Kernel requirement (by definition)
- Mission specific requirements repatriated to Kernel
- New Kernel requirements (change requests)
- Mission specific requirements (possible reuse for incoming mission in the family)
- Kernel requirements repatriated to SCOS-2000





## Missions contribution to the EE Kernel (1)

CRYOSAT

- Offline Database Editor and Consistency Check (\*) System
- Extension to Command Subsystem (Command and Parameter Identifier) (\*)
- Playback telemetry processing including command verification (\*)
- Mission Planning System
- File Transfer System
- Scheduler, Standing Order and Polling Tool
- Handling of bad time quality telemetry configurable per Virtual Channel
- On Board Software Maintenance (memory devices fully configurable + range checks)
- On Board Queue dump processing and automatic generation of delete commands
- All files related to the Ground Segment interfaces conform to XML-based syntax
- Concept of two real-time servers (prime and backup) and offline archive server architecture
  (\*) Already repetriated or condidate for SCC

#### (\*) Already repatriated or candidate for SCOS-2000





# Missions contribution to the EE Kernel (2)

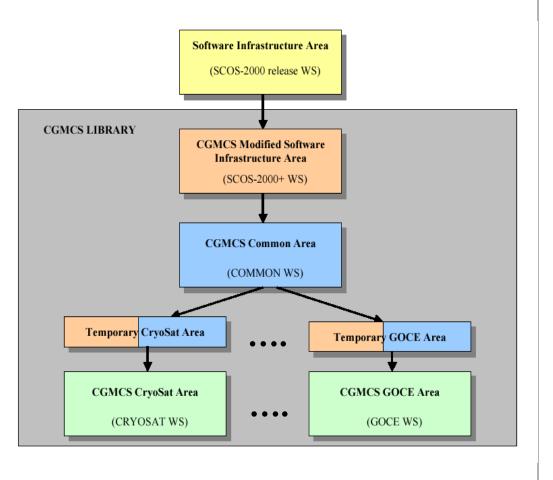
GOCE

- Mission Planning System Enhancement (e.g. multiple planning files)
- Telemetry Data Gap Identification
- Task Parameter Files supporting multiple sequences and microseconds
- Automatic Telemetry Replay
- Time Correlator

#### AEOLUS

- Management of weekly consolidation of playback telemetry data
- On Board Software Management Enhancements (e.g. Increased Configuration Control Generation through sequences stored into Central File Archive)
- Handling of Orbital Coordinates (MPS and Commands)
- Network Interface System Automatic Schedule Execution (NCTRS)








### The Development Workspace

- Single system separate installation for each mission
- System highly configurable
- Strong configuration control
- Maximum effort in generic design
- Isolation of EE Kernel requirements
- Requirement review process at each delivery
- High flexibility of maintenance to accommodate mission operational requirements

(critical phases - LEOP, SVTs)





Ground System Architectures Workshop – Common Solutions

1 3 Mar. 2005



## Conclusions

- ✓ The involvement of the ground segment teams in the design of the satellite TM/TC implementation is strongly beneficial in terms of reduction of the overall costs
- ✓ The adoption of the <u>same TM/TC data types</u>, <u>structures and services</u> <u>by several satellites</u> with similar needs allows cost savings in the MCS design, development and maintenance (cross-mission harmonisation)
- ✓ The adoption of a <u>'delta' approach for the specification and design</u> of SCOS-2000 based control systems allows significant cost savings and high detailed system already from an early development stage
- ✓ Design and development of <u>specific additions with generic solutions</u> to allow the reuse at minimum cost by future missions in the family or integration into SCOS-2000
- ✓ The overall described approach leaves margin for <u>enhancements and</u> <u>perfective</u> developments without prohibitive costs
- Project successful in terms of product quality and schedule





# Links

### Earth Explorer Missions

http://www.esa.int/export/esaLP/earthexplorers.html

Cryosat Mission

http://www.esa.int/export/esaLP/cryosat.html

Goce Mission

http://www.esa.int/export/esaLP/goce.html

Aeolus Mission

http://www.esa.int/export/esaLP/aeolus.html



