
Ted Faison - GSAW 2005 1

Indefinitely Evolvable
Architectures:
Event-Based Systems

Ted Faison
Faison Computing Inc.

ted.faison@computer.org

Ted Faison - GSAW 2005 2

EBSs have Superior Non-
Functional Characteristics
• Manageability - Independent teams

• Maintainability – Independent changes

• Deployability – Independent updates

• Testability – Independent parts

• Verifiability – Independent implementations

• Flexibility – Independent designs

Ted Faison - GSAW 2005 3

EBSs are cheaper and faster
to build
• EBSs are cheaper

Lots of small and independent parts are cheaper to build than fewer large
and dependent parts

• EBSs are easier to build
Development teams can work largely in parallel, due to the independence

between parts. Final integration is much easier.

• EBSs can evolve indefinitely
The parts are small and independent, so changes in the system

requirements tend to have much smaller impacts on the
individual parts. Changes often require only changing the system
wiring and adding new parts.

Ted Faison - GSAW 2005 4

Important EBS Definitions
• Event

A detectable occurrence

• Notification
Messages triggered by events

• The Observer design pattern

Subject Observer
Event Notification

Ted Faison - GSAW 2005 5

What is an EBS?
• It’s all about the system connectivity

The constituent parts interact primarily or
solely via notifications

Part 3

Part 1

Part 2

Notifications

Ted Faison - GSAW 2005 6

What is an EBS?

• It’s all about coupling (and how to avoid it)
– Static Coupling

Occurs at compile-time
Greatly affects development teams

– Dynamic Coupling
Occurs at run-time
Has little affect on development teams

Ted Faison - GSAW 2005 7

Improving the Observer pattern
• Self-subscribing Observers are coupled

to Subjects

• Binders decouple the parts

Subject Observer

1. Subscribe
2. Event

3. Notification

Subject Observer

1. Subscribe the Observer

2. Event 3. Notification

Binder

Ted Faison - GSAW 2005 8

Firing Events
(aka sending notifications)

• Sending Messages

• Using Procedure Calls
– Typed calls

Introduce type coupling, which is static
Example: myTypedReference.DoSomething()

– Untyped calls
Introduce signature coupling, which is dynamic
Example : myMethodReference.Execute()

Ted Faison - GSAW 2005 9

Interaction dynamics: active
and reactive patterns

• Active interactions

• Reactive interactions

Part A Part B

Interaction

Part A Part B
DoSomething

Part A Part B

Something
Happened

Ted Faison - GSAW 2005 10

Complexity Versus Size
• Heavily coupled systems: complexity

grows exponentially with size

• Decoupled systems: complexity grows
linearly with size

Ted Faison - GSAW 2005 11

Case Study 1: A Distributed
Workflow System

ASAP Cars - Order Processing System

Handle Order

Assemble Car

Generate Invoice

Send Request

Invoice Received

Client Distributed Servers

Ted Faison - GSAW 2005 12

System Coupling Diagram

ASAP Cars - Order Processing System

CommonTypes

Client

Vehicle AssemblyOrder Processor

Invoicing

Type
Coupling

Type
Coupling

Type
Coupling

Type
Coupling

Ted Faison - GSAW 2005 13

System Communication

ASAP Cars - Order Processing System

Messaging
Service

Client

Vehicle AssemblyOrder Processor

Invoicing

Logic
Coupling

Logic
Coupling

Logic
Coupling

Logic
Coupling

Ted Faison - GSAW 2005 14

Case Study 2: A System Browser

User Interface - File Browser

Ted Faison - GSAW 2005 15

File Searcher

User Interface - File Searcher

Ted Faison - GSAW 2005 16

User Interface Structure

FormMain

panelToolBar

panelStatusBar

panelNavigator panelContent

panelMain

Ted Faison - GSAW 2005 17

Class Diagram – Main Parts

• There are no relationships between the main
classes, meaning there is no static coupling
between them

• Objects interact using event notifications

+Populate()
+SelectFolder()
+GotoParentFolder()

NavigatorFolders

+Start()
NavigatorSearchInput

+Populate()
+Add()
+ShowIcons()
+ShowDetails()
+Clear()

ContentFileList

+Add()
+ShowIcons()
+ShowDetails()
+Clear()

ContentSearchResults

+SelectFolders()
+SelectSearch()
+ShowAddress()

FormMenuToolBar

+Message()
StatusBar

+StartSearch()
+ItemFound()
+CountChanged()

CoordinatorSearch

Ted Faison - GSAW 2005 18

The Binder

• The Binder is coupled to all the classes in the
system

NavigatorFolders

NavigatorSearchInput

ContentFileList

ContentSearchResults

FormMenuToolBar

StatusBar

FormMain

CoordinatorSearch

Binder

System Coupling Diagram

Ted Faison - GSAW 2005 19

Signal Wiring Diagrams

• Use Case: User selects a folder in the Folders
navigator

PopulateFolderChanged

ShowAddress

Message

FolderChanged

FolderChanged
OnFolderChanged

OnMessage
Message

W5

W3

W1

W7

Show folder path

ContentFileList

NavigatorFolders

FormMenuToolBar

StatusBar

Ted Faison - GSAW 2005 20

The Wiring Diagram as a
blueprint of connectivity

ViewIcons

ViewDetails

Add

Sh
ow

D
et

ai
ls

Sh
ow

Ic
on

s

OnViewIcons

OnViewDetails

Vi
ew

Ic
on

s

Vi
ew

D
et

ai
ls

Vi
ew

Ic
on

s

Vi
ew

D
et

ai
ls

Sh
ow

D
et

ai
ls

Sh
ow

Ic
on

s

Po
pu

la
te

Se
le

ct
Fo

ld
er

SelectParentFolder

ShowAddress

OnUpSelected

Fo
ld

er
C

ha
ng

ed

ParentSelected

Fo
ld

er
C

ha
ng

ed

Message

OnSearchRequested

OnItemFound

SeachRequested

ItemFound

W6
O

nI
te

m
Fo

un
d

O
nS

ea
rc

hR
eq

ue
st

ed

Se
le

ct
Fo

ld
er

O
nF

ol
de

rD
ou

bl
eC

lic
ke

d Clear

Se
ar

ch
R

eq
ue

st
ed

StartSearch

Se
ar

ch
R

eq
ue

st
ed

SearchRequested

FolderChanged

Viewing Mode

ShowFolders

ShowSearch

ViewFolders

ViewSearch

OnViewFolders

OnViewSearch

ItemFound

Ite
m

Fo
un

d

ItemFound

SearchRequested
O

nM
es

sa
geO

nF
ol

de
rC

ha
ng

ed

M
es

sa
ge

M
es

sa
ge

O
nM

es
sa

ge

M
es

sa
ge

OnMessage

MessageMessage

W1 W2

W3 W4

W5

C1

W7

StatusBar Messages

StatusBar Messages

O
nM

es
sa

ge

OnSearchStart
StartSearch

St
ar

t
St

ar
tS

ea
rc

h

Background Thread

FormMenuToolBar

ContentFileList ContentSearchResults

NavigatorFolders

StatusBar

CoordinatorSearch

NavigatorSearchInput

FormMain

Ted Faison - GSAW 2005 21

Advantages of EBSs
• Most parts of a system are statically decoupled

from the others

• Decoupled parts are easier to design, because
they don’t call other parts

• Decoupled parts are easier to develop and
maintain, because they can be tested in
isolation from the rest of the system

• Decoupled systems are easier to extend and
evolve, since the main parts are not aware of
the others

