
© 2005 The Aerospace Corporation. All Rights Reserved.

Working Group 9B
Architecture-Centric Evolution, Evaluation &

Elaboration (ACE3) of Software-Intensive Systems

Chairs
Dr. Sergio Alvarado

Dr. Scott Turner
The Aerospace Corporation

Dr. Hadar Ziv
Institute for Software Research, UC Irvine

2

ACE3 Session Goals

• Address stakeholder needs in evolution, evaluation, and
elaboration of architectures in software system lifecycle

Presentations from members of government agencies, contractors,
academia, and federally funded research and development centers

• Promote central role of software architecture during
acquisition/development of software-intensive systems

Forum for elucidating high-level recommendations for improving
architecture practices, representation techniques, and analysis tools

3

ACE3 Session Discussion Baseline

1. Elaboration
Architecture-based management of “requirements-creep” risk
Architecture constructs/tools for seamless requirement-to-implementation trace

2. Evolution
Architecture constructs/tools for supporting system evolution requirements
– Maintainability

» Upgrades, changes & integration of COTS products for system implementation
– Extensibility

» Increased system size, complexity, environments, services & interoperability
– Executability

» System performance and reliability

3. Evaluation
Challenges to architecture evaluation within software system acquisition
Architecture constructs/tools required for software system evaluation

4

ACE3 Presentations

• Acquisition Perspective
Frank Sisti, Air Force Space and Missile Systems Center
Maj. Mark Tuttle, Air Force Space and Missile Systems Center

• Overseeing Perspective
Dr. Charles Hammons, Software Engineering Institute
Dr. Peter Hantos, The Aerospace Corporation
Dr. Phillip Schmidt, The Aerospace Corporation

• Development Perspective
George Haley, Product Line Manager, Northrop Grumman
Jeff Garland, “Large-Scale Software Architecture Book Coauthor,” CrystalClear
Software
Ted Faison, “Component-Based Development Book Author,” Faison Computing

• Research Perspective
Dr. Hadar Ziv, Institute for Software Research, University of California, Irvine

• Moderators
Dr. Sergio Alvarado, The Aerospace Corporation
Dr. Scott Turner, The Aerospace Corporation

5

Elaboration

• Architecture must be understandable to all stakeholders
Software needs explicit representation in the program office (Sisti)
Customer (government) needs only high-level architecture with key
features (Sisti)

• Architecture must be elaborated in larger lifecycle context
(Hantos, Ziv, Tuttle)

Make stakeholders explicit in architecture (Ziv)

• Key UML diagrams for high-level architectures for large-scale
systems (Garland)

Context
Component
Component Interaction
Layered Subsystem
Deployment

6

Evolution

• Evolution more important now because of changing environment
(Hammons)

Changing threats, rapid technological development, political environment,
fluid requirements, longer service life
Each system serves as the seed for the next generation

• Support for system evolution must start in the architecture (Tuttle,
Hammons)

The groundwork for evolution must be laid before the need for evolution
System evolution is often driven by risk reduction (Tuttle)

• Component decoupling in architecture enables continuous system
evolution (Faison)

Decoupling enabled by standards, defined APIs, “Plug and Play”, event-
based architectures, layered systems, common messaging model, and
similar design elements (Faison, Hammons, Garland)

7

Evaluation

• Our ability to evaluate lags behind our ability to create (Hantos,
Haley, Schmidt)

Traditional metrics and evaluation processes don’t apply well to
architectures (Haley, Hantos)
Work to develop new approaches is still underway (Ziv)
Need tools (e.g., temperature charts) to succinctly communicate evaluation
to all stakeholders (Tuttle)

• Focus on bottom-line criteria for evaluation of architectures (Haley)
Utility, Development Cost/Schedule/Risk, O&M Cost

• Architecture evaluation is a key tool for managing complexity
(Schmidt) and risk (Tuttle)

Space systems are typically very complex, distributed (Schmidt, Garland)
Automated evaluation can identify issues otherwise lost in the complexity
(Schmidt)
We must produce architectures that can be evaluated (Schmidt, Sisti)

