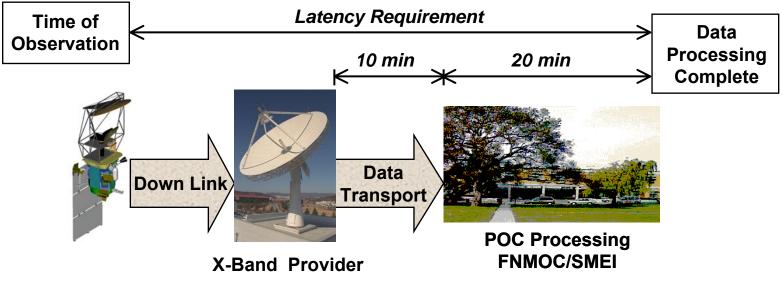


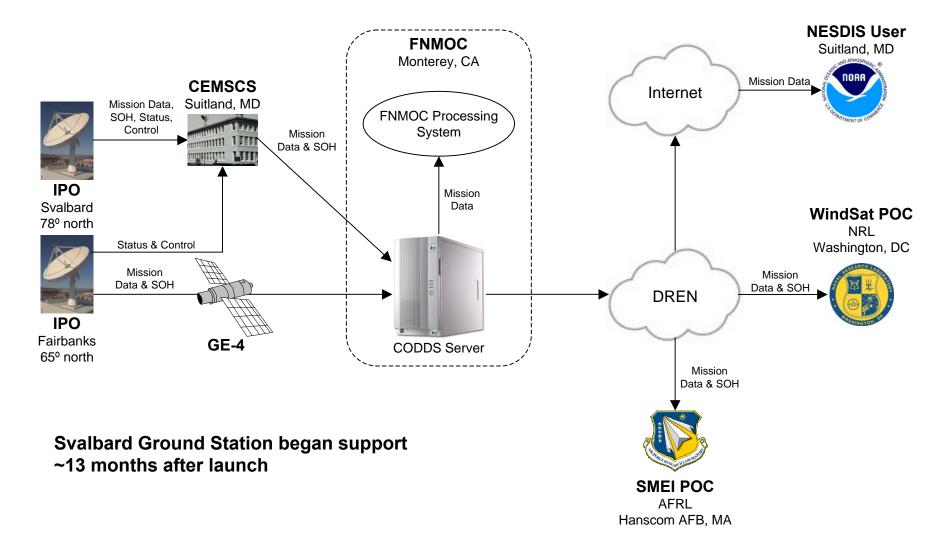
Coriolis Mission Operations Collaboration - Lessons Learned

Patricia Klein Coriolis Mission Manager Space Electronics System Development Branch Naval Research Laboratory patricia.klein@nrl.navy.mil (202) 767-6636

GSAW 2005 Working Group Session "Teaming Early, Teaming Often" March 2, 2005

Coriolis Program – Key Participants


- Space Test Program
 - Bus procurement, mission integration, launch, 1st year of Ops
- Naval Research Laboratory
 - WindSat design/development, Years 2+ Ops, WindSat data processing
- AFRL
 - SMEI design/development, SMEI data processing
- RSC
 - C²; Mission planning and scheduling
- NPOESS Integrated Program Office (IPO)
 - X-band ground stations and data distribution
 - NOAA/NESDIS
 - X-band ground station scheduling
 - Fairbanks Command & Data Acquisition Station (FCDAS)


Coriolis Space Vehicle @ Vandenberg AFB Dec 2002

What's the Big Picture?

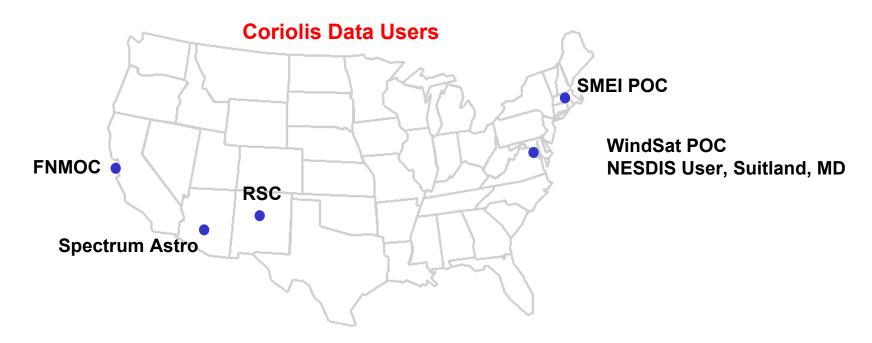
- Coriolis Orbit: 830km, sun synchronous, polar
- Payload science data Latency Requirements
 - Defined as inclusive time from ground observation through completion of ground data processing
 - Year 1 : 24 hours
 - Years 2 and beyond: WindSat = 4 hrs; SMEI = 6 hrs

Coriolis X-band Data Distribution (Current)

What's the Problem?

- Year 1
 - Due to polar orbit, high latitude ground stations provide required coverage
 - Downlinking on-board data recorder 4x/day using commercial Xband provider
- More stringent Year 2 Latency Requirement drove overall ground system design
 - Requires downlinking recorder every orbit (14x/day)
 - 350% cost increase (over 1st year) just for ground station pass time
 - Additional ground comm line bandwidth required, which increased program cost by an additional \$360K/year for years 2 and beyond

Why Collaborate?


- WindSat Mission Objectives
 - Measure Ocean Surface Wind Speed and Direction
 - WindSat instrument is a risk reduction for NPOESS CMIS (Conical Scanning Microwave Imager/Sounder) Instrument
 - NPOESS IPO has a strong interest in WindSat continuation

- NPOESS would eventually need to test their ground system concept
 - If NPOESS ground segment funds and development schedule could be moved up by 1-2 years, it could support Coriolis X-band downlink and data distribution
 - Early deployment yields early test phase for NPOESS ground segment concept
 - Funds well spent for both programs more bang for the buck
 - No significant NPOESS program cost △ money would just be expended earlier

Who's Involved?

- The NPOESS-Coriolis collaboration is mainly a Government-Government effort, including the NRL, NOAA, and USAF
 - Aerospace Corp. provided requirements analysis, system engineering, and technical performance assessment
- NPOESS contractors (Harris/Omaha, Raytheon/Aurora) and RSC Contractor (Northrop Grumman) are key participants

- WindSat instrument had high visibility within the NPOESS IPO
- IPO came up with plan, received approval by management
- Loading study completed to evaluate whether FCDAS could handle the extra workload
- Coriolis downlink signal f_c = DMSP 1MHz
- IPO funded, designed, and implemented upgrades to FCDAS and Svalbard
 - All changes planned to minimized impact to on-orbit operations
- Progress tracked by coordinating IPO effort with Coriolis Mission Manager
 - MOA/MOU/Mission Support Plans
 - Test plans
 - Program schedule

- Coriolis has been on-orbit since January 2003
- Ground data distribution system consistently outperforms data latency requirements
- Has undergone two significant upgrades with very little impact to data users
 - New antenna system at Svalbard
 - Changeover and upgrade of international communication lines
- Will save Coriolis program \$13.5M over the 5 year design life

- **Early on, NPOESS System Program Director approved concept**
 - True Win-Win situation provided high motivation to succeed
 - Made funding available earlier than originally anticipated, i.e. NPOESS ground system development effort accelerated by about 1 year
- Good people
 - Creative thinkers; Outside-the-box thinking
 - Technical expertise
 - Word is bond Integrity of agreements
 - Minimal documentation
- Extensive COTS use
 - From antenna to user nearly all COTS
 - CCSDS-compliant data formats
 - RF downlink compatible with existing ground stations (DMSP)
- Small, empowered ops team
 - Rapid decision making
 - Good team communications no one "out of the loop"
- Close proximity of IPO (Maryland) and NRL (DC)
 - Collaborative effort was somewhat simplified

Data distribution network troubleshooting procedures should have been better defined and earlier

What's Next?

- Coriolis
 - Goal is to fly one year simultaneously with CMIS (2009-10)
- NRL
 - Blossom Point Satellite Tracking Facility (southern Maryland)
 - Government Owned Contractor Operated (GOCO) facility currently supports >165 satellite contacts per day for <\$200/contact</p>
 - Engineering and operational support to all manner of space assets
 - Reconfigurable hardware coupled with an open, distributed software environment
 - Currently L-, C-, S-band compatible; STDN, SGLS
 - Interested in teaming with other space and ground segment assets for all aspects of space operations, calibration, and technical demonstrations

