Space IP based components (Grid and Web Services Projects)		
Organization, Project Name,		
POC	Technology/Application	Finished Products/status
NASA Ames IPG POC: Piyush		
Mehrotra		
Piyush.Mehrotra-1@nasa.gov	The IPG (Information Power Grid) is being used	Operational Grid connecting NASA Centers
650-604-5126	to test "middleware" such as the Globus	(Ames, Glenn, Langley) with supercomputers,
Tom Hinke	metacomputing toolkit, grid-enabled applications	mass storage devices, large clusters of
thinke@mail.arc.nasa.gov Global	such as OVERFLOW, and improved accounting,	computers (including new Columbia (10,240
Grid Forum Applications	security, and scheduling functions. Management	processor Linux machine Columbia (10,240
http://www.cs.vu.nl/ggf/apps-	of the testbed is decentralized and democratic,	processor Linux machine),
rg/index.html	with each site retaining full control over the use of	Common Grid Services,
http://www.ipg.nasa.gov/	their resources.	Information Environments,
CEOS Grid pilots All CEOS		
projects below Yonsook Enloe,		
NASA/SGI		
yonsook@harp.gsfc.nasa.gov		
yonsook@mindspring.com, Allan	CEOS (Committee on Earth Observation	
Doyle,	Satellites) Working Group on Information	
adoyle@intl-interfaces.com	Systems Services (WGISS)	Grid Security (CA Certification Authority)
http://lennier.gsfc.nasa.gov/grid/	CEOS GRID Task Team	Cookbook for Virtual Organizations; security
(started 2002)		and firewall best practices
CEOS/ESA European Space	Open GRID services for Earth Observation : To allow GRID-based applications to discover & retrieve information about relevant datasets in any global coverage area of interest, transfer large amounts of EO data products to the GRID,	
Agency (ESA), Open GRID services for Earth Observation	and trigger hundreds of concurrent processes to carry out data processing & analysis on-the-fly.	

	NOMADS is a network of data servers to access	
Operational Model Archive and	and integrate model and other data stored in	
Distribution System) POC Glenn	and integrate model and other data stored in apparaphically distributed repositories in	DODS-OPeNDAP http://opendap.org/ servers
Rutledge NOAA NCDC	beterogeneous formats. NOMADS enables the	(OPeNDAP as transport standard for ocean
Glenn Rutledge@popp gov	sharing and inter-comparing of model results and	(or end Ar as transport standard for ocean
Danny Bringgar NOAA NCDC	is a major collaborative effort spanning multiple	Globus 2.4.2 Work Flow manager Pegasus
Danny Brinegar @poaa.gov	Government agencies and academic institutions	, Globus 2.4.2, Work How Manager Legasus,
Danny.Dimegar@noda.gov	OGC : Demonstrate the reasibility of the	inetadata Catalogue Services), CDS,
	integration of Grid and OGC web service	
	technologies for providing interoperable,	
	personalized, on-demand data access and	
	services at the NASA data pools environment.	
	Grid technology geospsatially enabled and OGC	
CEOS/GMU George Mason	standard compliant and make OGC tech Grid	
University, OGC & Grid/Web	enabled. The integration allows researchers to	
Services (NASA ESTO Funding),	focus on science and not issues with data receipt,	ESTC 2004 paper
POC : Liping Di GMU	format, and manipulation. The built-in OGC	http://www.esto.nasa.gov/conferences/estc200
lpd@rattler.gsfc.nasa.gov	geospatial services include subsetting,	4/papers/a3p3.pdf presentation
Aijun Chen GMU	resampling, georectification, reprojection,	http://www.esto.nasa.gov/conferences/estc200
aijunchen@gmail.com	reformatting, and visualization.	4/presentation/A3/a3p3.pdf
CEOS/ESTO University of	Data mining and machine learning applications	
Alabama in Huntsville (UAH),	targeting the Earth sciences. UAH will also	
Grid-Enabled Scientific Data	Investigate the use of the Earth Science Markup	GIODUS TOOIKIT 3, GRIDFTP?
Mining Prototype, POC : Sara	Language (ESML) to address both data	
Graves, sgraves@itsc.uah.edu	format/interoperability issues, and data semantics	
Helen Conover,	for the Grid. Bring in tech from NSF	
hconover@itsc.uah.edu	Middleware Initiative (http://www.nsf-	
Sandra Redman,	middleware.org/) and MEAD Expedition on the	Algorithm Development and Mining System
sredman@itsc.uah.edu	TeraGrid Alliance.	(ADaM) [http://datamining.itsc.uah.edu/adam/]

CEOS/USGS Data delivery utilizing GridFTP, Data Sharing, POC : Stuart Doescher, USGS/EDC, doescher@usgs.gov, (605)-594- 6013 Mike Neiers, neiers@usgs.gov (605) 582 6834 Technical contact	GridFTP & certificate authority process for data delivery to the scientific user community and with receiving data into the archive from producer/reception sites. Explore utilization of GRID technologies to improve the scalability WTF (WGISS Test Facilities) cal/val to promote and ease the sharing of data between the Cal/Val collaborators and with NASA Data Pools.	Globus Toolkit 3 GridFTP The catalog manager services : Metadata Catalog Service (MCS) and the Storage Resource Broker (SRB) Metadata Catalog (MCAT).
CEOS/Dutch Space, GridAssist POC : GridAssit: Mark Vacher Dutch Space m.vacher@dutchspace.nl Ruud Grim r.grim@dutchspace.nl http://tphon.dutchspace.nl/grease /public/index.html	GridAssist as interface for legacy system to grid services. GridAssist provides a portal for access to applications, resources and data using high- speed networks, a scenario builder that can be used to construct scenarios consisting of chains of data and applications, and a controller that schedules the jobs on a Computational Grid.	GridAssist is a Grid-based workflow management tool that allows the user to execute workflows in a Grid environment. Was GREASE (Grid Aware End-to-end Analysis and Simulation Environment)
CEOS/GSFC ADG (Advanced Data Grid), NPOESS Preparatory Project (NPP) - funding cancelled, POC : Jeffrey Lubelczyk, Project Lead NASA/GSFC jeffrey.t.lubelczyk@nasa.gov Samuel Gasster, Aerospace Corp samuel.d.gasster@aero.org Robert Harberts GST harberts@gst.com	Advance Data Grid Prototype Project goal is to address sizing, performance & scalability of grid technology for a peta-byte class Earth Science ground system., GSAW March 2003 presentation on the GSFC Data grid pilot http://sunset.usc.edu/gsaw/gsaw2003/s7/gasster. pdf GlobusWorld 2004 http://www.globusworld.com http://www.globusworld.org/program/slides/8c_3.p df	Globus Toolkit Storage Resource Broker / Metadata Calalog (SRB/MCAT) Metadata schema for MODIS Level 0/1 data in SRB/MCAT data ingest and MCAT updates

CEOS/GSFC EOSDIS Data Pools, POC : Mike Moore, NASA,/GSFC, mike.moore@gsfc.nasa.gov,		
Liping Di, George Mason University, Ipd@rattler.gsfc.nasa.gov, (301) 552-9496 Chris Bock, NASA/GSFC, chris.bock@gsfc.nasa.gov, (301)614-5241	Integration of Grid & OGC (http://www.opengeospatial.org/) web service technologies for providing interoperable, personalized, on-demand data access and services at the NASA data pools environment (distributed active archive centers (DAACs) at GSFC, Langley, EDC, and NSIDC).	OGC web service technology for the interoperability of geospatial data (with Web Coverage Services (WCS), Web Map Services (WMS), Web Feature Services (WFS), and Web Registries Services (WRS))
LandSat Mission Data Continuity (LMDC), POC : Samuel Gasster, Aerospace Corp samuel.d.gasster@aero.org		

National Virtual Observatory (NVO) Teragrid (US) , POC: Roy Williams, PI California Institute of Technology, Andrew Connolly, col University of Pittsburgh Jeffrey Gardner, col Pittsburgh Supercomputing Center http://www.us-vo.org/ NASA GSFC NVO Resouce http://nvo.gsfc.nasa.gov (since	 NVO : NSF funded multiyear effort to build tools, services, registries, protocols, & standards that can extract the full knowledge content of massive, multi-frequency data sets. Observations from networked space telescopes - Montage Grid - a portable, compute-intensive, custom astronomical image mosaicking service for NVO (Atlasmaker), (Authentication) Science Gateways - HotGrid resource allocation to science user using the "Clarens" software from the High Energy Physics community, General framework for time domain surveys data integration such as QUEST and PanSTARRS. Very Long Baseline Interferometry (VLBI), this network of 17 radio telescopes collected data to pinpoint the European Space Agency's Huygens probe during its descent through Titan's atmosphere 	Suite of applications at http://www.us- vo.org/apps/ - User portal using JSP & COG kit - GridShell - grid-enabled shell scripting environment using Globus to spawn large multi- processor jobs & Condor Glidein scheduler (http://www.tacc.utexas.edu/gridshell and http://www.psc.edu/~gardnerj/talks/SC04- Gridshell.ppt) - NVO Registry Portal at STScl (access services for catalog, image, spectral data, descriptions of organizations & data collections) Mosaicking gateway - Montage :ESTC 2004 paper http://www.esto.nasa.gov/conferences/estc200 4/papers/a3p4.pdf presentation . - Data replication (Caltech, SDSC, NCSA) - Web Enabled source identification and cross- matching service (WESIX) http://nvo.phyast.pitt.edu/) to analyze imaging data & to cross-match catalogs with existing multi frequency data sete
International virtual observatory (IVOA) 14 member projects (ESO/ESA, US, UK, Canada,	IVOA : seeks to ensure that the essential VO infrastructural technologies and interoperability standards are developed to enable a VO	
China, Russia,	capability on a global scale. ;	VOTable (XML format for tabular data), -
Korea, Hungry, France,	- Demonstrations utilized new standard interfaces	Resource Discovery - Astronomical Query
Germany, Italy, Australia, Japan,	and protocols for accessing catalog and image	Language,
India) http://www.ivoa.net/	data, and the galaxy morphology demo employed	Data Format Description Language (DFDL) -
International OPTICON	grid-based computing for doing parallel	language for describing formats
Interoperability Working Group	computations	http://www.epcc.ed.ac.uk/dfdl, others

		acquires ground-based observations of
		surface weather as its lowest-level input data &
		produces high-resolution gridded outputs of
		surface weather fields. Prototype at
	GRID-BGC , A grid-compute architecture for	http://www.daymet.org; 2. A state-of-the-art
	terrestrial biogeochemical modeling. The	model of terrestrial carbon, water, and nitrogen
NASA Earth Sciences, Earth	objective of the GRID-BGC project is to create an	cycles
Science Technology Office,	end-to-end technological solution for high-end	3. A post-processing engine
NASA Earth Science AIST	Earth system modeling that will reduce the costs	4. A visualization engine
(Advanced Information Systems	and risks associated with research on the global	5. A mass storage system with high-speed
Technology) POC: Peter	carbon cycle and its coupling to climate.	connection to the computational engines.
Thornton, (National Center for	Implementing an efficient supercomputer-based	Mass Storage System (MSS) at
Atmospheric Research (NCAR)	Grid Compute Engine for end-to-end operation of	www.scd.ucar.edu/main/mss.html
http://www.esto.nasa.gov/info_tec	a high-resolution, high data-volume terrestrial	http://www.cgd.ucar.edu/tss/staff/thornton/grid_
hnologies_aist1.html	carbon cycle model.	bgc/
	Roadmap to an Earth Science cyberinfrastructure. Demo: NASA scientist at Wallops Island, Virginia used a grid-enabled portal (developed by the San Diego Supercomputer Center) to control an electron microscope at the University of California	ESTC 2004 paper http://www.esto.nasa.gov/conferences/estc200
	at San Diego, with the data from that work being	4/papers/a3p1.pdf ESTC 2004 presentation
NASA Earth Sciences, Earth	shipped over the grid to a storage system at	http://www.esto.nasa.gov/conferences/estc200
Science Technology Office	Ames.	4/presentation/A3/a3p1.pdf
NASA Farth Sciences Farth	ESDSWG (Farth Science Data Systems Working	Next-generation Evolvable Web-based
Science Technology Office. Farth	Groups) REASoN (Research, Education &	Distributed Interoperable Services (NEWDIS)
Science Data Systems Working	Applications Solutions Network) Program	Road Man
Groups ESDSWG	http://lennier.gsfc.nasa.gov/seeds/	Distributed Interoperable Services Road Map
Groups ESDSWG http://spg.gsfc.nasa.gov/spg	http://lennier.gsfc.nasa.gov/seeds/ (SEEDS (Strategy for Evolution of ESE Data	Distributed Interoperable Services Road Map REASoN Services & Interface Inventory

	ECHO : Public clearinghouse into EO data,	
	ECHO services	
	Data services – provide earth science data	
NASA Earth Sciences ESTO	subsetting, reprojection, science algorithm,	
ECHO (Earth science Clearing	conversions, invoked by clients	ECHO Earth Science Metadata Conceptual
House), POC : Keith Wichmann	Search services – thesaurus, Gazetteer,	Model (EESMCM),
wichmann@gst.com ECHO	coincident search, query preview, invoked by	Client IF : Mercury-EOS for Web-based search
(Earth science Clearing House	client	and order system for the ORNL DAAC.
http://www.echo.eos.nasa.gov/	Adm services – billing, accounting, LDAP,	Use of UDDI
	CACIC: Orida fan Casasa Onanstiana, maarida	
	through a portal all the convices (command	
Development and Operations	Infough a portal all the services (command,	
Crid Prototype (Space DOC)	control, telemetry, voice and video) required to	
Glid Plototype (SpaceDOG),	conduct collaborative errors whether on a small	Space Ope 2002 and 2004
POC : Bob Bradiord	scale like between several engineers/scientists to	SpaceOps 2002 and 2004
bob.bradiord@msic.nasa.gov	program/project level collaboration. These efforts	http://www.spaceops2004.org/downloads/ppts/f
donna.sellers@msrc.nasa.gov	could be supporting space ops of developments.	inal/bradford_283_131_final.ppt
	HOSC : EHS (Enhanced HOSC System), PDSS	
	(Payload Data Services System - for ISS Science	
	data), PPS (Payload Planning System), TReK	
NASA MSFC Huntsville	(Telescience Resource Kit for Remote	
Operation support Center,	users/Principle Investigator), IVoDS (Internet	
HOSC Ground System for ISS,	Voice Distribution System), Launch Information	
STS, Chandra, POC : Barry	Exchange Facility (LIEF), connectivity to	Unix to PC Migration & Linux; migration to web
Bryant,	European Space Operation Center and User	3 tier architecture; security with firewall/VPN,
barry.s7.bryant@Imco.com	Support and Operations Centres (USOC)	SAN/NAS storage; remote operations
NASA JSC Mission Control and		
Grid projects, POC: Steve		
Gonzalez	Investigation of how to use grid technologies for	
steven.a.gonzalez1@jsc.nasa.go	Distributed control center, working with vendor	
V	http://www.datasynapse.com/;	Grid for Exploration Conference.2004

NASA OMNI (Operating Missions		
as Nodes on Internet) Program,		
POC : James Rash	OMNI (Operating Missions as Nodes on	
dave.israel@nasa.gov	Internet)., Space Network IP Services (SNIS) for	
Dave Israel	IP services to NASA TDRS & GN (White Sands)	
dave.israel@nasa.gov	IP Handbook for Space Mission Communications,	More at Space Internet Workshop
Keith Hogie	Space Componenets (LPT/GRID, CFDP)	presentations
http://ipinspace.gsfc.nasa.gov/	http://ipinspace.gsfc.nasa.gov/documents/	http://ipinspace.gsfc.nasa.gov/siw.html
NASA GSFC GMSEC (GSFC Mission Services Evolution Center), POC : Dan Smith, dssmith@pop500.gsfc.nasa.gov	GMSEC architecture provides a scalable, extensible ground & flight system approach for future missions. The architecture enables quick and easy integration of functional components that are selected to meet the unique needs of a particular mission. The architecture enables the addition, deletion, and exchange of components to meet the changing requirements of missions as they progress through their lifecycles and provides a rapid, flexible, and cost-effective	Standardized messages formats, Plug-and-play components, Information software bus, Platform transparency,
GMSEC Ref Arch, GMSEC	means to meet a wide variety of evolving mission	Mission Services Components : Telemetry &
Applications Programming	concepts and challenges.	Command, Planning &
Interface (API)	GMSEC Development Lab, augmented with	Scheduling, Assessment & Archive, Guidance
http://gmsec.gsfc.nasa.gov/	adapters,	Navigation & Control, & Simulation & Modeling
		Java, web services (including middleware.
NASA JPL/NASA Ames, Mars		SOAP, XML data transfer, Enterprise Java
Exploration Rover Collaborative		Beans) using Weblogic from BEA system
Information Portal (CIP), POC :		COTS, Java Virtual Machine (client), JMS Java
Joan Walton, Ames		Message Service for messaging event
jdwalton@mail.arc.nasa.gov		notification.
650–604–2005		Message-driven beans manage message
Ronald Mak,	MER CIP (Collaborative Information Portal)::	archiving, Verisign digital certificates for
rmak@mail.arc.nasa.gov	MER Team time management, personnel	security; JaveOne 2003 presentation
ron@apropos-logic.com	management and scheduling, data handoff	www.sfbayacm.org/events/slides/2003-11-
650–604–0727	tracking and viewer navigation	19_CIP.ppt

	MERS portal (example of NASA portal) -	
	eTouch Systems, service provider of content	
	management & document management,	
	Speedera Networks, provider of distributed	
	application and content delivery services,	MERS portal won two Webby Awards, an
	provides the networking, storage and computing	international honor for Web sites presented by
NASA Portal and Knowledge	services to disseminate images globally in a	the International Academy of Digital Arts and
Management, POC: Jeanne	matter of seconds.	Sciences. The portal achieved the No. 2 site
Holm,	http://www.kmworld.com/publications/magazine/in	for government customer satisfaction and was
Jeanne.Holm@jpl.nasa.gov ,	dex.cfm?action=readarticle&Article_ID=1888&Pu	named a top-10 government site for sub-
http://km.nasa.gov	blication_ID=120	second response time
	GSFC VMOC Technology Develop :	
	http://ldcm.gsfc.nasa.gov/tech_transfer/SOMO/07	
	_SOMO_UserTools_AutoSys_Breed.pdf;	
	Smallsat : Citizen-Explorer mission	
	https://spacegrant.colorado.edu/vmocc/docs/dow	
NASA GSFC, Virtual Mission	nloads/pre_VMOCC_CDR.doc;	
Operations, POC: GSFC Julie	https://spacegrant.colorado.edu/tiki-	
Breed	index.php?page=VMOCC	
	GRC VMOCC : Veridian Virtual Mission	
	Operations Control Center security gateway	
NASA GRC, Virtual Mission	www.cisco.com/application/pdf/en/us/guest/	
Operations Control Center	strategy/strategy/c644/ccmigration_09186a00803	
(VMOCC) security gateway	89c13.pdf	Security Gateway
NASA JPL, NASA JPL VMOC	JPL VMOC (Virtual Mission Operation Center) -	IEEE Aerospace Conference paper 2004, JPL
	used on Deep Space 1, by Team-X	Virtual Mission Operation Framework : http://ct-
Meemong.Lee@jpl.nasa.gov	(spacecraft design team) and I eam-I (instrument	esto.jpl.nasa.gov/subpages/Reports/03report/d
(818) 354-2228;	Idesign team) at JPL	ms/dms-03.html
MACO DOC + David Zatacha 505	AERL VMOC : Air Force and Army Space	
	Pattlelebe' work with the Virtual Mission	
Doub Zotocho @Kintland of mil		
Paul.Zetocha@Kirtland.at.mll	Operations Center.	

		1998: FUSE (Far Ultraviolet Spectroscopic
		Explorer) ground system that used the SCL
Flight and Ground system		messaging architecture to simplify the
automation, SCL (Spacecraft	SCL (Spacecraft Command Language) : SCL	transition from integration & test to flight
Command Language) & 'Software	uses the message bus architecture to provide a	operations. 2002: NASA's EO-1 messaging to
bus' from Interface & Control	distributed and scalable system for both flight and	integrate the legacy flight software with SCL's
System	ground automation See SML in XML section	expert system.
	OODT uses a plug-in framework approach. It	
	provides the transports, query optimization,	
	metadata, and data representation components.	
	You add plug-ins that link the framework to your	
	local data stores. You can provide OODT's	Used on PDS (Planetary Data System
	features without impacting or changing existing	http://pds.jpl.nasa.gov/), Early Detection
	operations.	Research Network (EDRN) Resource Network
NASA JPL OODT (Object	- Enterprise Data Management (EDM) Services:	Exchange (ERNE), SeaWinds, QuikSCAT,
Oriented Datat Technology) &	Catalog and Archive Management, Metadata	Earth Science Mission, Space, planetary,
OODT Data Grid Framework	Services, Object Identifier Service, Query	biomedical, National Institutes of Health.
POC : Daniel	Expression, Security Services, Server	OODT is open source software available
CrichtonDan.Crichton@jpl.nasa.g	Management, Grid Services (product, profile,	through the Open Channel Foundation
ov http://oodt.jpl.nasa.gov/oodt-	query), Meta Search, RMI Registry, XMLRPC	http://openchannelsoftware.com/orders/index.p
site/index.html,	Proxy	hp?group_id=332
	WISARD (Web Interface for Searching Archival	
	Research Data) : Access Space Physics Data	
	Facility (SPDF) with data from ROSAT, ASCA,	
	XTE, and COBE	

	SERVO ((Solid Earth Research Virtual	
	Observatory Grid) : Use web service technology	
	to demonstrate the assimilation of multiple	
	distributed data sources into a major parallel high-	
	performance computing earthquake forecast	
	model.	
NASA JPL, ESTO Funding,	Complexity Computational Environment (CCE)	
SERVO Grid	Architecture, GML Schemas as Data Models for	http://servo.jpl.nasa.gov/
(Solid Earth Research Virtual	Services	http://www.servogrid.org/ ESTC 2004 paper
Observatory Grid), POC : Andrea	• Fault and GPS Schemas are based on GML-	http://www.esto.nasa.gov/conferences/estc200
Donnellan, Jay Parker JPL,	Feature object.	4/papers/a3p2.pdf ESTC 2004 presentation
Geoffrey Fox, Marlon Pierce	Seismicity Schema is based on GML-	http://www.esto.nasa.gov/conferences/estc200
Indiana University' John Rundle	Observation object.	4/presentation/A3/a3p2.pdf also see
University of California Davis,	http://grids.ucs.indiana.edu/~gaydin/schemas/	http://www.isi.edu/ikcap/scec-it/
NASA JPL, ESTO Funding,		
Montage Architecture for		
Grid-Enabled Science Processing		
of Large, Distributed Datasets,	Montage image mosaic service on TeraGrid/NVO	
POC : Joseph Jacob, Daniel	 Background modeled and matched across 	
Katz, Thomas Prince (JPL)	images	ESTC 2004 paper
Bruce Berriman, John Good,	Modular "toolbox" design	http://www.esto.nasa.gov/conferences/estc200
Anastasia Laity (IPAC)	 Loosely-coupled engines for Image 	4/papers/a3p4.pdf presentation
Ewa Deelman, Gurmeet Singh,	Reprojection, Background Matching, Co-addition	http://www.esto.nasa.gov/conferences/estc200
Mei-Hui Su (ISI)	Order mosaics through web portal	4/presentation/A3/a3p4.pdf
		Models & abstract interfaces that allow a
Stanford University (NASA &		virtual around station to be composed of team
other funding) Federated Ground	FGN (Federated Ground station Network) or	members. These models & interfaces are
Network & GSML (Ground	Virtual Ground Station (VGS) - federate	standardized to allow beterogeneous station
System Markup Language)	networked ground stations that are under different	implementations extensible to allow for future
Networked Ground station, XMI	administrative domains. Ground station facilities	technology development, hierarchical for
Data Definitions :. POC : Stanford	can dynamically join and leave the federation.	composition of station operations & resources.
Software Infrastructure Group	Users designate a subset of facilities as a "team"	& open to facilitate federation membership.
(SWIG) - James Cutler	that collaboratively solves a high-level task with	http://swig.stanford.edu/space.shtml .
jwc@stanford.edu, Armando Fox	path and node redundancy within a team to deal	SpaceOps 2002, IEEE Aerospace Conference
Started 2000	with partial failuresven at GSAW Shirley Tseng 3/2/05	2004, GSAW 2003 Page 11

	ESA SpaceGrid Study study is run by a	
	consortium led by Datamat S.p.A. (I), with Alcatel	
	Space (F), CS Systems d'Information (F), QinetiQ	
	(UK), Rutherford Appleton Laboratory (UK),	
	SciSys Ltd. (UK).	SpaceGrid Final report
	http://www.spacegrid.org	http://www.spacegrid.org/PublicDocs/SpaceGR
	http://www.esa.int/export/esaSA/SEMXUES1VED	ID_Final_Report.zip, dissemination plan, Grid
	_earth_0.html	use for domains Earth Observation; Space
	2003 SpaceGRID presentations	Research (Spacecraft - Plasma Interactions;
	http://earth.esa.int/rtd/Events/SpaceGRID_2003/i	Space Weather; Radiation Transport), Solar
ESA SpaceGrid study, 2001-2003	ndex.html	System Research; Mechanical Engineering.
	GDAAS : Gaia Data Access and Analysis Study	
	(GDAAS) large-scale mission simulations and	
	data analysis runs using the CESCA	
	(Supercomputing Centre of Catalonia) facilities. A	
	mission duration of 18 months, and simulated	
	data for 200,000 stars distributed over the sky,	
Dutch Space, GaiaGrid, GAIA	has been used. Results demonstrate that the	GaiaGrid with CESCA (Supercomputing
:GMV Madrid Pedro Perez,	`global iterative solution', at the heart of the Gaia	Centre of Catalonia) facilities;
astronomers at the University of	data processing challenge, can be implemented	GDAAS complete, GDAAS-2, are expected by
Barcelona Jordi Torra	as anticipated	June 2005.
ESA SCOS 2000 Grid Mission	SCOS 2000 Grid Integration model for MCS	
Control System, POC : Vicente	(Mission Control System) kernel & Portal for the	
Navarro, ESA - ESOC	provision of Ground Segment services within	
Darmstadt, Germany	Spacecraft Control Operations System 2000	Grid-aware SCOS-2000 kernel, IEEE
vicente.navarro@esa.int	(SCOS-2000) Ground Systems	Aerospace Conference 2004 paper,
	Planck@EGEE project is to port Planck	
EGEE Planck satellite, POC : Dr.	simulation software on the EGEE Grid	
Pasian INAF-Osservatorio	infrastructure (Enabling Grid E-science Europe	ESRIN "Grid & e-Collaboration for the Space
Astronomico di Trieste, ITALY	http://egee-intranet.web.cern.ch/egee-	Community"
(2007)	intranet/gateway.html)	02/02/2005 http://www.congrex.nl/05m04/

	and Implementation of Collaborative	
	Environments) : Identification of the common and	
	generic technology elements essential for the	
	establishment of a collaborative environment that	
	supports web-based domain-specific vertical	
	organizations;	
	Identification of common interface mechanisms	
	for data, applications and service establishment,	
	including "exchange languages" for the	
ESA EO Science User	interaction and exploitation of available	
communities, THE VOICE	resources;	
(THEmatic Vertical Organizations	Implementation of prototypes, i.e. the	
and Implementation of	implementation of collaborative environments with	
Collaborative Environments),	representative applications and services for	ESRIN "Grid & e-Collaboration for the Space
POC : Stefano Beco / Annalisa	domain-specific vertical organizations involving	Community"
Terracina – DATAMAT S.p.A	the Earth science domain.	02/02/2005 http://www.congrex.nl/05m04/
CCSDS Architecture Working		
Group, MOIS (Mission Operation	CCSDS : Reference Architecture for Space Data	
Information System) POC :	Systems ,Architecture Working Group (AWG),	
Takahiro Yamada	MOIS, Space Link Extension (SLE), Spacecrafot	
http://www.ccsds.org/	Onboard Internface (SOIF)	
	ESA RASDS (Ground System Software	
ESA SCOS 2000 and NoC	Roadmap), Ground Segment Reference	
(Network of Technical Centers),	Architecture, Services, Requirements,	
SCOS 2000 Mission Control	- NoC (Network of Technical Centers) initiative	
System, POC : Nestor Peccia,	from Agenda 2007	

	Propose a general data model framework (UML)	
	to support space missions. Proposed framework	
	has two elements:	
	- Astronautics reference Object Model (ASTROM)	
	defined in UML.	
	- XASTRO schemas (XASTRO is the XML based	UML model.
	representation of the ASTROM UML model).	www.ssd.rl.ac.uk/ccsdsp2/Meetings/
	- Apply framework to mission (CRYOSAT).	2002/OXF02/XPack/ETS CAOSXML TN.pdf
ESA & VEGA IT GmbH XASTRO.	- Automated Generation of schema(s) from UML	XSP - Space Program Schema(s).
POC : Anthony Walsh, VEGA IT	model (UML -> XMI -> XML Schemas) if feasible,	XSS - Space Segment Schema (s).
GmbH, awalsh@vega.de	XASTRO Schemas,	XSD - Space Domain Schema (s),
Niklas Lindman, ESA/ESOC,	http://www.estec.esa.nl/conferences/aerospace-	XSF - System Framework Schema(s),
nlindman@esa.int	pde-2002/icon_ppt.gif	(?Galileo ground segment)
ESA Wireless Onboard		
Spacecraft Working Group		
http://www.wireless.esa.int/		
SpaceLAN		
AFRL Space Plug-and-play		
Avionics (SPA) standard &		IEEE Aerospace 2005 paper: Plug & Play
Adaptive Avionics Experiment	Part of Responsive Space initiative, SPATSS	Testbed to Enable Responsive Space
(AAE)., DOD OFT (Office Force	(Space Plug-and-play Avionics Testbed Simulator	Missions, Jeff Summers, MicroSat Systems
Transformation), POC:	/ Stimulator) BAA	Inc.
'william.foster@kirtland.af.mil',	http://www2.eps.gov/spg/USAF/AFMC/AFRLPLSV	303-285-5153
http://www.oft.osd.mil	D/SPATSS%2D01/SynopsisR.html	jsummers@microsatsystems.com
DOD Network Centric Warrare		
Initiatives, DOD NCES (Network		
Centric Enterprise Services),		
Policy : Standards :		
http://www.opengroup.org/public/		
member/proceedings/q104/03gs.	DOD NCW initiatives, NCOW Reference model,	
htm	Global Information Grid	

DOD Hortzontal Fusion http://horizontalfusion.dtic.mil/	To TPPU - tasking, posting, processing, & using from TPED tasking, processing, exploitation, and product delivery	NCW Toolkit (NG, MA McDonald Bradley), Horizontal Fusion Portal (Mars Portal for warrioers : BEA Weblogic Portal), Collateral Space (a virtual workspace and data store on the SIPRnet - Autonomy Inc COTS)
DOD Integrated Network Enhanced Telemetry (iNET) project , Range Safety & Test and Evaluation Community https://www.jt3.com/iNET.html	INET (Integrated Network Enhanced Telemetry) https://www.jt3.com/iNET.html BAA Test and Training Enabling Architecture (TENA) middleware 3.0, TENA Repository, TENA Logical Range Data Archive. The TENA Object Model ; Funded via OSD's Central Test & Evaluation Investment Program (CTEIP)	

XML Data Definition Initiatives		
Spacecraft Mark-up Language (SML), ICS Interface & Control		Standardised representation of Spacecraft. SML elements can then be used to represent
Systems, Inc, Columbia,	SML (Spacecraft Mark-up Language) is an early	spacecraft command, telemetry, data storage
Maryland (since 1994), Flown on	extension of XML that provide definition of XML	entities; Application messages, Events,
Clementine (1994), ROMPS,	tags & concepts of structure to allow the definition	Science data, Status information for logging
FUSE (5 years), X33, EO-1	of spacecraft & other support data objects.	-OASIS Rpt :http://www.oasis-
(2004) : Future : TacSat-2	Command Interpreter/Expert System for On-	open.org/cover/spacecraftML.html
(Techsat21), SBIRS High, RLV2,	Board Space Applications/Embedded Systems	-GSAW 2000
GLAST I&T., interface to AML	(pre XML DTD, Scheme, web services, SOA,	sunset.usc.edu/events/GSAW/gsaw2000/pdf/C
and AIML	uses scripting) Based on Record Definition	appelaere.pdf
http://www.interfacecontrol.com/s	Language (RDL), developed by GSFC for use on	-papers :
ml.asp	ASIST ground	http://www.interfacecontrol.com/white.htm
	(IML) is a general language to describe	
	instruments based on an XML Schema	
	Astronomical Instrument Markup Language	
	(AIML) is the first implementation of the more	
Instrument Markup Language	general Instrument Markup Language, for	
(IML), Astronomical Instrument	astronomy domain (and infrared instruments in	
Markup Language (AIML),	particular). Instrument Remote Control (IRC)	IRC for use on SOFIA (Stratospheric
Instrument Remote Control IRC	Framework provide an adaptive framework that	Observatory for Infrared Astronomy) project, a
Framework, POC : Troy Ames	provides robust interactive & distributed control	Boeing 747-SP aircraft modified to
Troy.J.Ames@nasa.gov	and monitoring of remote instruments. IRC will	accommodate a 2.5 meter reflecting telescope.
+1 301 286-5673	eventually enable trusted astronomers from	In 2001, SOFIA will be the largest airborne
http://aaaprod.gsfc.nasa.gov/IRC/	around the world to easily access infrared	telescope in the world. AIML will be used on
iml/index.cfm	instruments (e.g., telescopes, cameras, and	the HAWC (High Resolution Airborne
http://aaaprod.gsfc.nasa.gov/IRC	spectrometers) located in remote, inhospitable	Wideband Camera), .
(1997)	environments.	

GSML (Ground System Markup Language), Stanford University (NASA & other funding), POC : Stanford Software Infrastructure Group (SWIG) - James Cutler jwc@stanford.edu, Armando Fox http://swig.stanford.edu/space.sht ml	Federated Ground station Network (FGN) - federate networked ground stations that are under different administrative domains. Ground station facilities can dynamically join and leave the federation. Users designate a subset of facilities as a "team" that collaboratively solves a high-level task with path and node redundancy within a team to deal with partial failures.	GSML (Ground Segment Mark-up Language) is to provide a hierarchical command and control language that implements the virtual ground station (VGS) abstraction levels; Models & abstract interfaces that allow a virtual ground station to be composed of team members. These models & interfaces are standardized to allow heterogeneous station implementations, extensible to allow for future technology development, hierarchical for composition of station operations & resources, & open to facilitate federation membership. , , SpaceOps 2002, IEEE Aerospace Conference 2004, GSAW 2003
XML Telemetry & Command, POC : Gerry Simon, OMG Space TF Chair, Kevin Rice GSFC GST http://www.omg.org/space/ XML Scheduling (new) http://www.omg.org/space/ XML Procedural Language definition (new), POC : Geri	XTCE (XML Telemetry & Telecommand Exchange) :	GSFC Prototype, XML DTD
Chaudhri/Sid Hollander Geraldine.a.Chaudhri@aero.org Sidney.Hollander@aero.org (310) 336-1091 (310) 336-3994 http://www.omg.org/space/		

	OrbitML : Spacecraft Flight Dynamics Markup Language (OrbitML) is an eXtensible Markup Language (XML) implementation for the representation of information objects in the spacecraft Flight Dynamics problem domain. OrbitML encompasses all the range of space missions (scientific, telecommunications, earth observation, navigation,) and phases (LEOP, commissioning, routine, end of life,). By providing a standard definition of the involved	
XML OrbitML, spacecraft Flight	concepts, their structure, relationships and	
Dynamics markup language	interfaces based on an extensively used and well known underlying technology (XML). OrbitML	
Francisco M. Martínez	allows easy interaction between different	
Fadrique(1), Alberto Águeda	operators and agencies in the space field.	IEEE Aerospace Conference 2005,
Maté (2), Gonzalo García (3)	The initial implementation aims to the operations	focusSuite® (focusGEO), GMV's generic Flight
fmartinez@gmv.es	support of a variety of satellite missions while	Dynamics software, OrbitML proof of concept
aagueda@gmv.es	allowing the extension of its coverage to	prototype, future use on NAPEOS (ESA's
ggarcia@gmvspacesystems.com	incorporate new requirements for navigation	Navigation Package for Earth Observation
http://www.orbitml.com GMV	missions, constellations, interplanetary scenarios	Satellites)
Space Systems (Spain)	and beyond.	
System (OAIS) (Status? And		
deployment?) CCSDS Data		Producer-Archive Interface Methodology
Archive Ingest (DAI) Working		Abstract Standard (PAIMAS) SpaceOps 2004
Group.), POC : John Garrett		-Preservation metadata & digital library
(John.Garrett@gsfc.nasa.gov)	OAIS (Open Archival Information System)	www.rlg.org
+1.301.286.3575	reference model specifies an Archival Information	http://www.oclc.org/research/projects/pmwg/def
http://ssdoo.gsfc.nasa.gov/nost/is	Package (AIP) for defining the context of a digital	ault.htm 2004 preservation survey
oas/us/overview.html	entity. The archival collection is the aggregation	http://www.oclc.org/research/projects/pmwg/sur
www.ccsds.org	of the archival forms of the digital entities.	veyreport.pdf

NASA Ames NASA Ontonology		
taxonomy, POC : Javne E Dutra.	NASA Taxonomy: Semantic-Based Technologies	
JPI Information Architecture	(with RDF) using the taxonomy to create a	
NASA Taxonomy Manager.	semantic search capability.	linstallation with DISA/NASA registry (will be
Javne E Dutra@ipl nasa gov	http://nasataxonomy.jpl.nasa.gov	part of v5 0 release)
	SWEET Semantic Web for Earth and	
	Environmental Terminology (SWEET) to encode	
	semantic meaning into Web pages and IFs via	
	ontology languages (RDF, DAML), and the	
NASA Earth Science Technology	creation of a Semantic Web for the Earth	
Office.	Sciences.	
http://sweet.ipl.nasa.gov/ontology	http://oceanesip.ipl.nasa.gov/tech_workshop/swe	
/	etTalk.ppt	
NASA Earth Science Technology		
Office, Dist data mining, POC :		
Hillol Kargupta, University of	NASA DAO/NOAA AVHRR (Advanced Very High	
Maryland & AGNIK, LLC	Resolution Radiometer) Pathfinder Data Model	
http:// http://www.cs.umbc.edu	Mining a Network of Virtual of Virtual	
www.cs.umbc.edu/~hillol /~hillol	Observatories Observatories subsets from Sloan	
http://www.agnik.com	Digital Sky Survey (SDSS) & 2MASS all Sky	
http://www.agnik.com,	Survey	http://www.cs.umbc.edu/~hillol/nasap.html
hillol@cs.umbc.edu	 Cluster the set of objects using attributes from 	NASA Data Mining resource
hillol@cs.umbc.edu	both Clusters	http://nvo.gsfc.nasa.gov/nvo_datamining.html
	ESML (Earth Science Markup Language) is an	Products: ESML Schema, ESML Editor, ESML
	interchange technology that enables data (both	Library
NASA Earth Science Technology	structural and semantic) interoperability with	Formats Supported : ASCII, Binary, Grib,
Office, U of Alamaba, POC :	applications without enforcing a standard format	netCDF, HDF-EOS, WSR88D Level II
rramachandran@itsc.uah.edu	within the Earth science community.	Python Modules (PyESML)
http://esml.itsc.uah.edu/index.jsp	http://esml.itsc.uah.edu/index.jsp	ESML for IDL

	ESDSSWG : Global Change Master Directory, Directory Interchange Format (GCMD DIF), EOSDIS Core System science metadata model for Earth Science Data (ECS ESDT Data Model), Federal Geographic Data Committee content	
	standard for geospatial metadata (FGDC Content	Fast Format (for distributing Landsat-7 data
NASA Earth Science Data	Standard),	products),
System Standards WG POC :	EOS Clearinghouse data provider science data	World Meteorological Organization Binary
Richard Ullman	model (ECHO ingest data model),	Universal Format for Representation (BUFR).
richard.ullman@nasa.gov	Data Format Standards,	Data Discovery & Access Protocol Standards,
Ming-Hsiang Tsou	Hierarchical Data Format (HDF),	EOSDIS Clearinghouse Protocol (ECHO
mtsou@mail.sdsu.edu,	Network Common Data Format (netCDF),	Procotol),
http://spg.gsfc.nasa.gov/standard	Geographic Tagged Image File Format	Open-source Project for a Network Data
s/heritage/STSUM_brief	(GeoTIFF)	Access Protocol (OPeNDAP)