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• Overview
• Year 1 – Initial Investigation
• Year 2, 3 – Deep Dive into Characterization
• Proposed Mission work – plan overview



Problem Statement
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Mission Telemetry is voluminous and growing.  Much of this 
telemetry is provided “in case it’s needed” and never explicitly 
checked or trended.  Advances in “Big data” data mining analytic 
techniques can help monitor and highlight interesting changes for 
subsystem analysis with minimal effort required to establish the 
checks. 

Example: Van Allen Probes Mission*
• 50k TLM streams across 2 spacecraft
• Manual regular trending on ~300 pts
• Possible value in automated monitoring of other 99% of points

*Post-launch, the Radiation Belt Storm Probes (RBSP), RBSP-A and RBSP-B, were renamed the Van Allen Probes



Overview

2-5 March 2020Minimum Effort Telemetry Data Mining 4

Goal: With little to no user input/supervision, identify novelty in telemetry using 
automated behavior characterization and analysis
• No user input = no mission/system context, no tagged data, no feedback
• Novelty: “a localized or permanent change in the behavior of telemetry data, compared to a 

nominal characterization”
• Novelty includes:

• Single-point outliers – ex: 3-sigma outlier values
• Overall behavior changes – ex: clipping
• Event-specific behavior changes – noise characteristic during a burn is 20% larger than 

what has previously been observed
• Identify novel events for further manual investigation, while minimizing the number of total 

novel events (false positives)

Effort:
• Year 1,2 – IRAD
• Year 3 – IRAD (Partial)
• Proposed – Mission Funding

Team:
• 3 Software Engineers
• Some Data Science/ML 

experience



Year 1 – Initial Investigation
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Overview:
• Build up big data pipeline
• Focus on use of statistical techniques (min, max, avg) across constant time 

windows (3-hr, 1-day)
• Input: nominal time range, test time range
• All data treated as continuous numerical values
• Calculation of an “outlier factor”

• Novelty determined at the spacecraft level (i.e.: across all telemetry)
• Broad search across early mission data
• Focus on known anomaly events, see if we can “find” them in Van Allen Probe 

spacecraft RBSP-B historical data
• Get confirmation from SME



Van Allen Probes
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IRAD effort used a subset of historical data from Van Allen Probe spacecraft 
RBSP-B 

• ~25,000 TLM points
• 622 mission days
• Ave:3.9 GB / day
• Total: 2.38 TB

Perigee Altitudes
605 & 625 km

2 Observatories
• Spin Stabilized ~5 RPM
• Spin-Axis 15°-27° off Sun
• Attitude Maneuvers Every 21 days
• Operational Design Life of 2 years

TDRSS

• Objective:
Provide understanding, ideally to the point
of predictability, of how populations of
relativistic electrons and penetrating ions in
space form or change in response to
variable inputs of energy from the Sun.



Statistical Approach
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Sample Analysis 1: Jan 1, 2013 – Feb 4, 2013
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(Note: Unless otherwise noted, dates are for the 3-hour features; all times represent window starts)
1. Isolated spike at Jan 3 2013, 22:00:00, secondary isolated spike at Jan 4 2013, 07:00:00
2. Extended spike starting at Jan 10 2013, 07:00:00, peak at Jan 10 2013, 10:00:00 extending through Jan 10 2013, 13:00:00 

(9 hours)
3. Isolated spike at Jan 17 2013, 07:00:00 (12-hour feature)
4. Isolated spike at Jan 25 2013, 01:00:00
5. Extended spike starting at Jan 31 2013, 07:00:00, peak at Jan 31 2013, 10:00:00 extending through Jan 31 2013, 13:00:00 

(9 hours)
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Sample Analysis 2: Sept 1, 2012 – August 3, 2013 (48 
weeks)
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(Dates are general start-stop times of long-term trends, unless otherwise noted)
1. Launch and commissioning period (Aug 31, 2012 – Nov 1, 2012)
2. Isolated spike at Nov 1, 2012 11:00:00 (3-hour)
3. Extended period of outlier behavior (approx Mar 1, 2013 – Apr 4, 2013), showing a distinctive 

slope
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Year 1 – Takeaways
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• Success! - did find novelty that corresponded to identified events
• However, spacecraft-level novelty does not provide operational value

• Most detected “events” were normal actions (ex: burns), or SC 
reactions to an anomaly (autonomy status changes)

• Determination: Current paradigm (fixed-window, statistical) does not 
provide sufficient granularity to characterize telemetry for target novelty



Year 2, 3 – Deep Dive into Characterization
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Overview
• Refine novelty detection paradigm
• Deep dive into more detailed characterization of individual 

telemetry series
• Investigation into Machine Learning techniques



Challenges
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Spacecraft data is subject to:
• Periodic and non-periodic environmental effects (known and unknown)

• Orbit, solar events
• Periodic and non-periodic spacecraft events (known and unknown)

• SC modes, commanded events (burns)
• Unknown correlation with other spacecraft subsystems (known and 

unknown)
• Coupling

The problem is then the generic time-series data problem: can we 
characterize all the modes of a telemetry series well enough to understand 
when its behavior changes?



Spacecraft Behavior Classification Hierarchy
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Data and Algorithms
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• Generally, any algorithm will have certain requirements/restrictions on the input data
• ex: Consistent frequency, consistent/no noise, relative scaling, volume

• Raw telemetry tends to not conform to these requirements/restrictions
• Higher levels of novelty detection generally require higher levels of abstraction

Thus, a significant portion of the effort was in data transformation to facilitate the use of 
more traditional ML algorithms.

Raw Data “Clean” DataData 
Abstraction

Data 
Abstraction

Algorithm

Algorithm

Characterization
/Outlier 

Detection

Characterization
/Outlier 

Detection

Characterization
/Outlier 

Detection



Nominal Characterization – Single TLM Stream
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Change Point Detection, Segmentation, Point Outlier
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“Clean Data” Generation
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• Generate a de-noised, 
constant frequency data 
set from segment 
representation

• Able to down-sample for 
performance



Segment-based clustering

2-5 March 2020Minimum Effort Telemetry Data Mining 18

Convert raw data into segments with 1st order poly model: trend and noise
Represent segments and transitions as numerical arrays
Segment = [y-intercept, slope, stdDev, duration]
Transition = [transition value, slope1, slope2, stdDev1, stdDev2]



Segment-based novelty detection (LoOP)
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Trained on the above slightly noisy sine wave

zero-signal Abrupt jump in offset High-noise section



Segment-based clustering – Mean Shift
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Goal: Cluster train segments and transitions:
• To evaluate test outlier segments
• To provide layers of abstraction for further pattern 

characterization

Challenges
• Unknown number of clusters (k)



RBSPB data - TLM stream 101865
Segment clustering via Mean Shift
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200k raw points -> 986 segments -> 8 clusters

Cluster – Population - Color
0 - 611 - green
1 - 327 - red
2 - 5 - blue
3 - 4 - orange
4 - 4 - magenta
5 - 18 – yellow
…



RBSPB data - TLM stream 101865
Behavior Determination – Matrix Profile
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Identify complex, repeated sequences to determine telemetry behaviors

From red sequences From blue sequences



Behavior Identification – Test Data
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• Use identified behaviors to provide analysis context to test data
• Actual TLM in red, compared behavior in blue



Telemetry Cross-Correlation
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Modifications to Algorithms
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Algorithm [Big O notation] Modifications
Binary Segmentation n^2 - Rolling Binary Segmentation

- Heuristic Preprocessing
- Model Demotion post-process
- Noise-based segmentation post-
process

Matrix Profile n^2 – n^3 - Frequency scaling on clean data 
generation
- “Input generic” matrix profile

Behavior Determination 
(using Matrix Profile)

n - Match thresholding
- z-shift vs z-norm options
- “Null behavior” consideration



Lessons Learned – Part 1
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• Algorithms can be very sensitive to hyper-parameters (tunables)
• Our current paradigm has ~30 parameters

• A “universal parameter set” that works well for all possible telemetry 
streams is unlikely to exist
• “Auto-tune” parameters themselves require parameters

• “No user input” makes accuracy and intended sensitivity difficult to achieve
• Even small user insight can improve the characterization quality

• Data transformation is an important aspect of ML
• Algorithms (even fancy ML ones) have some requirements/restrictions 

to the input data (content, quality, format, etc)



Lessons Learned – Part 2
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• Becoming a “user” of an algorithm (i.e.: understanding limitations, tunables, 
req’s on input, interpretation of output) takes some bench time
• The “art” is in understanding how to tune the algorithm, which comes with 

familiarity
• You may not know how effective an algorithm will be with your data until 

you actually use it

• Visualization layer is a very important aspect of telemetry analysis
• Ultimately a human needs to see and understand the results

• ML is not objectively better, statistical methods should be attempted, and are 
generally more transparent to understand/troubleshoot
• Statistical methods better for determining “why” something is an outlier



Parker Solar Probe – Proposed Mission-Funded Effort
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Goals
• Focus on specific subsystem - temperature sensor telemetry (~200 streams)
• Incorporate analyst feedback/context into characterization – nominal and 

realtime
• Develop visualization strategy
• Find “secondary value” in intermediate data transformations
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