

An Open Architecture for an Infinitely Scalable C2 system using Docker, Kubernetes, and Istio

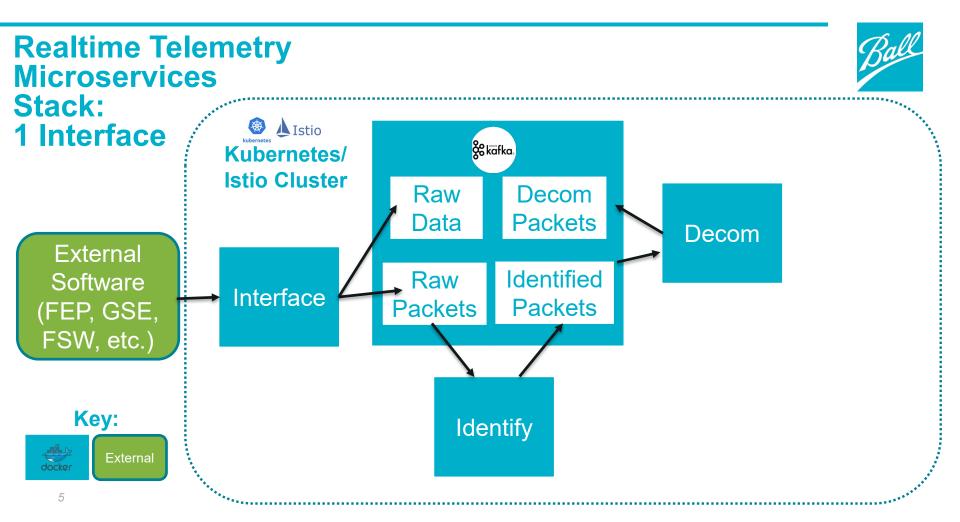
Ryan Melton Ball Aerospace

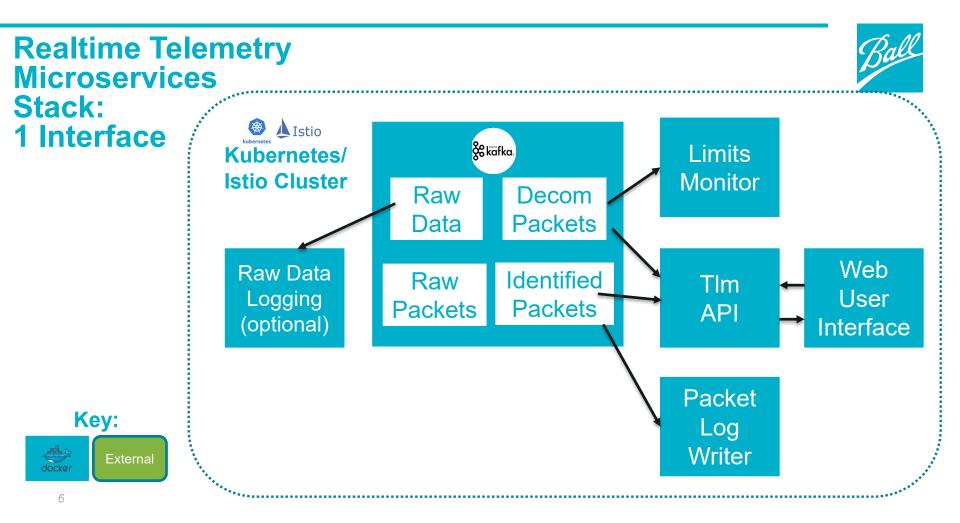
© 2020 by Ball Aerospace & Technologies Corp. Published by The Aerospace Corporation with permission. 3/17/2020

The Solution: Infrastructure

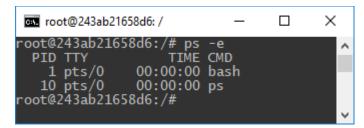
- Docker Builds and runs containers Ideally one process per container
- Kubernetes Organizes and orchestrates containers in "pods" – Provides networking, process monitoring, DNS, replication, and autoscaling
- Istio Adds a proxy server to every pod that all network traffic goes through – Allows mTLS without any application changes, detailed built in monitoring metrics, and strict security rule enforcement

kubernetes

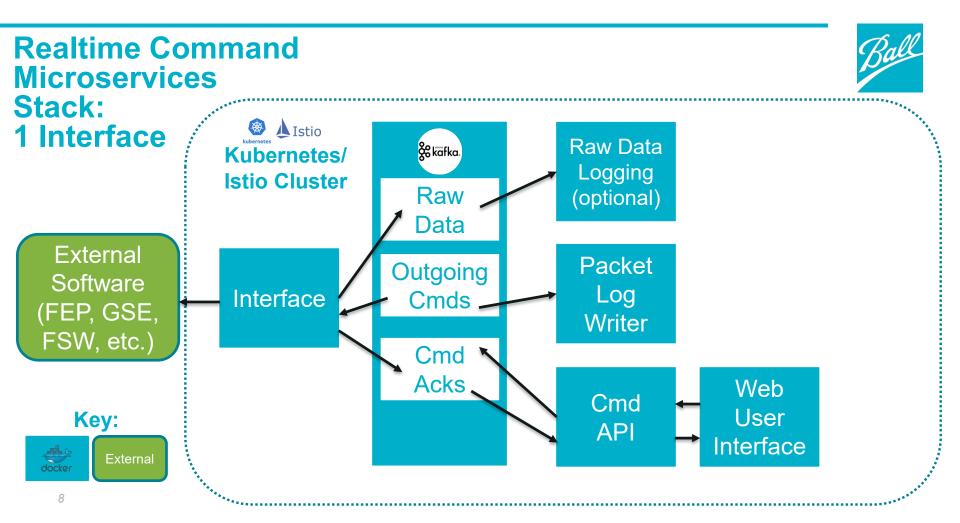



Event Driven Asynchronous Comm

- Streaming Message Broker
 - Provides a common asynchronous interface between the containers that make up the C2 system
 - Scales easily to new satellites by simply adding more containers
 - High performance from a simple internal architecture – streams are basically just files
 - Primarily used to receive streaming telemetry


So kafka®

Architecture Break #1: Docker


 Processes inside a docker container (1):

Processes inside a
virtual machine (280!):

27413 ?	00:00:00	unity-fallback-	
27417 ?	00:00:00	polkit-gnome-au	
27452 ?	00:00:42	compiz	
27475 ?	00:00:00	evolution-calen	
27486 ?	00:00:00	gvfs-udisks2-vo	
27505 ?	00:00:00		
27516 ?	00:00:00		
27517 ?	00:00:00		
27525 ?	00:00:00	gvfs-mtp-volume	
27533 ?	00:00:00		
27536 ?	00:00:00	evolution-addre	
27549 ?	00:00:00		
27588 ?	00:00:00	gvfsd-metadata	
27621 ?	00:00:00		
27625 ?	00:00:00		
27634 ?	00:00:00		
27635 ?	00:00:00		
27637 ?	00:00:00		
27641 ?	00:00:00	gvfsd	
27651 ?	00:00:00	gnome-screensav	
27662 ?	00:00:00	sh	
27666 ?	00:00:00	zeitgeist-daemo	
27674 ?	00:00:00	zeitgeist-fts	
27675 ?	00:00:00	zeitgeist-datah	
27689 ?	00:00:01		
27696 ?	00:00:00		
27708 pts/36	00:00:00	Ďash	
27929 ?	00:00:00	update-notifier	
27940 pts/36	00:00:04		
27982 ?	00:00:00		
28025 ?	00:00:00		
28027 ?	00:00:00		
28034 ?	00:00:00		
28057 pts/36	00:00:00		
29144 ?	00:00:00		
31920 ?	00:00:00		
31956 ?	00:00:00		
32234 ?	00:34:18		
32244 ?	00:00:02	gnome-terminal-	
	00:00:02		
	00:00:02		
32439 ? 32441 ?	00:00:02	postgres	
32442 ? 32443 ?	00:00:02	postgres	
	00:00:02	postgres	
	00:00:01	postgres	
32445 ?	00:00:01		
32574 pts/4	00:00:00	su	
32575 pts/4	00:00:00		
32599 pts/17	00:00:00		
rubytest@rmelton-VirtualBox:~\$			

Architecture Break #2: Kubernetes

Config file to deploy a replicated app in Kubernetes:

apiVersion: apps/v1 kind: Deployment metadata:

name: nginx-deployment labels:

app: nginx

spec:

replicas: 3

selector:

matchLabels:

app: nginx

template: metadata: labels: app: nginx spec: containers: - name: nginx

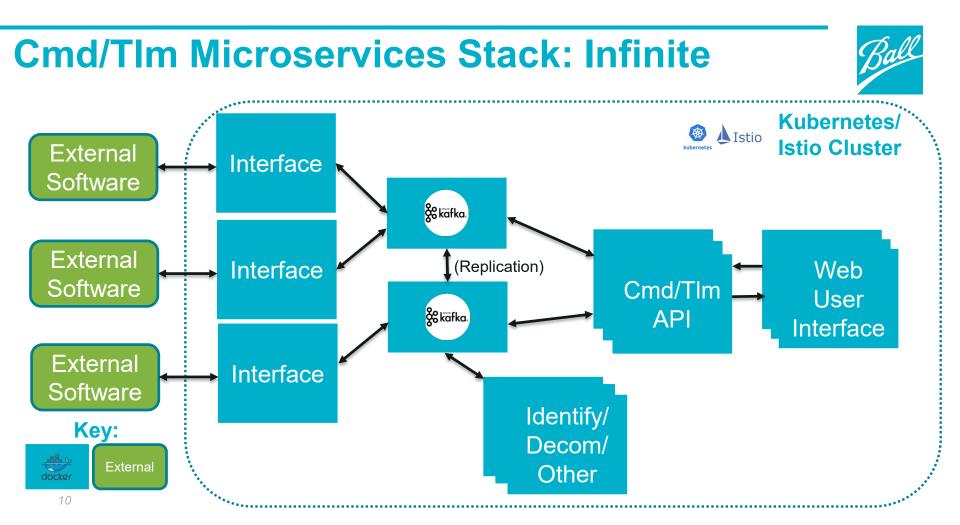
image: nginx:1.7.9 ports:

- containerPort: 80

apiVersion: v1 kind: Service metadata:

name: nginx-service spec:

selector:


app: nginx

ports:

- protocol: TCP port: 80 targetPort: 80

kubernetes

Architecture Break #3: Istio

Installing Istio with mTLS in auto mode:

istioctl manifest apply --set profile=demo \
--set values.global.mtls.auto=true \
--set values.global.mtls.enabled=false

Summary

- Docker containers hold each microservice
- Kubernetes manages orchestrating and scaling microservices
- Istio provides encrypted communications between all microservices, and useful metrics
- Kafka provides an easily scalable message bus platform
- C2 architecture can be scaled to any number of interfaces, by adding more microservices and Kafka nodes when necessary

Questions

Keep up with C2 at Ball at: cosmosrb.com/news

Backup Slides

Scaling

- As additional satellites and ground support hardware are added, new Kafka nodes can be added to continually scale
- Microservices performing identification, decommutation, and packet logging can be created and assigned to one or more pieces of hardware as bandwidth dictates
- The overall Kubernetes cluster can be grown by adding additional hardware nodes at anytime. In cloud environments, this can be done on demand.
- Additional PostgresSQL databases for archiving can be added to support unique new sets of hardware. The API will handle querying the correct backend database.

Reliability

- Kafka data is replicated and any node can fail with automatic failover and no downtime
- Kubernetes will automatically respawn any pod that dies
- Postgres Database can be setup with master-master replication to support automatic failover

Security

- All internal C2 cluster data is encrypted and verified using mTLS as supported by Istio – This requires no changes to application code
- Istio policy ensures pods can only talk to other pods as required
- Ingress/Egress from the C2 cluster is secured by policy with only necessary access granted
- Kubernetes access is controlled by keys that are only available to admin users

Docker and Containers

- Like Virtual Machines But Better...
- Dockerfile
 - Text file captures the steps to build the container repeatably
- Lightweight
 - Starts in seconds
- Ideally only one process running in each container
- Contains only what is needed to run the single process

3/17/2020

Kubernetes

- Orchestrates containers into groups called pods – starts them up and keeps them alive
- Provides an isolated network environment for the cluster and assigns them IP addresses / DNS names
- Provides load balancing for groups of containers
- Supports auto-scaling

kubernetes

Istio

- Adds a controlled proxy container to every pod
 - Enables Mutual TLS between pods with no changes to the application
 - Allows setting security constraints ie.
 Pod X can only talk to pod Y
 - Provides detailed built-in monitoring metrics, such as bandwidth in and out of each pod

