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The Solution: Infrastructure

 Docker – Builds and runs containers –
Ideally one process per container

 Kubernetes – Organizes and orchestrates 
containers in “pods” – Provides networking, 
process monitoring, DNS, replication, and 
autoscaling

 Istio – Adds a proxy server to every pod that 
all network traffic goes through – Allows 
mTLS without any application changes, 
detailed built in monitoring metrics, and strict 
security rule enforcement

3/17/20203



Event Driven Asynchronous Comm

 Streaming Message Broker
– Provides a common asynchronous 

interface between the containers that 
make up the C2 system

– Scales easily to new satellites by simply 
adding more containers

– High performance from a simple internal 
architecture – streams are basically just 
files

– Primarily used to receive streaming 
telemetry
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Architecture Break #1: Docker
 Processes inside a 

docker container (1):
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 Processes inside a 
virtual machine (280!):
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Realtime Command 
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Architecture Break #2: Kubernetes
 Config file to deploy a replicated app in Kubernetes:

3/17/20209

apiVersion: apps/v1
kind: Deployment
metadata:

name: nginx-deployment
labels:

app: nginx
spec:

replicas: 3
selector:

matchLabels:
app: nginx

template:
metadata:

labels:
app: nginx

spec:
containers:
- name: nginx

image: nginx:1.7.9
ports:
- containerPort: 80

---

apiVersion: v1
kind: Service
metadata:

name: nginx-service
spec:

selector:
app: nginx

ports:
- protocol: TCP

port: 80
targetPort: 80
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Cmd/Tlm Microservices Stack: Infinite
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Architecture Break #3: Istio

 Installing Istio with mTLS in auto mode:
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istioctl manifest apply --set profile=demo \
--set values.global.mtls.auto=true \
--set values.global.mtls.enabled=false



Summary

 Docker containers hold each microservice
 Kubernetes manages orchestrating and scaling 

microservices
 Istio provides encrypted communications between all 

microservices, and useful metrics
 Kafka provides an easily scalable message bus platform
 C2 architecture can be scaled to any number of 

interfaces, by adding more microservices and Kafka 
nodes when necessary
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Questions

 Keep up with C2 at Ball at: cosmosrb.com/news
3/17/202013
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Backup Slides
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Scaling
 As additional satellites and ground support hardware are 

added, new Kafka nodes can be added to continually scale
 Microservices performing identification, decommutation, and 

packet logging can be created and assigned to one or more 
pieces of hardware as bandwidth dictates

 The overall Kubernetes cluster can be grown by adding 
additional hardware nodes at anytime.  In cloud environments, 
this can be done on demand.

 Additional PostgresSQL databases for archiving can be added 
to support unique new sets of hardware.  The API will handle 
querying the correct backend database.
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Reliability

 Kafka data is replicated and any node can fail with 
automatic failover and no downtime

 Kubernetes will automatically respawn any pod that 
dies

 Postgres Database can be setup with master-master 
replication to support automatic failover
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Security

 All internal C2 cluster data is encrypted and verified 
using mTLS as supported by Istio – This requires no 
changes to application code

 Istio policy ensures pods can only talk to other pods as 
required

 Ingress/Egress from the C2 cluster is secured by policy 
with only necessary access granted

 Kubernetes access is controlled by keys that are only 
available to admin users
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Docker and Containers

 Like Virtual Machines But Better…
 Dockerfile

– Text file captures the steps to build the 
container repeatably

 Lightweight
– Starts in seconds

 Ideally only one process running in 
each container

 Contains only what is needed to run 
the single process
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Kubernetes

 Orchestrates containers into groups called 
pods – starts them up and keeps them alive

 Provides an isolated network environment for 
the cluster and assigns them IP addresses / 
DNS names

 Provides load balancing for groups of 
containers

 Supports auto-scaling
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Istio

 Adds a controlled proxy container 
to every pod
– Enables Mutual TLS between pods 

with no changes to the application
– Allows setting security constraints ie. 

Pod X can only talk to pod Y
– Provides detailed built-in monitoring 

metrics, such as bandwidth in and out 
of each pod
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