
1

Ball Aerospace
Ryan Melton

3/17/2020

An Open Architecture for an 
Infinitely Scalable C2 system using 

Docker, Kubernetes, and Istio

© 2020 by Ball Aerospace & Technologies Corp. Published by The Aerospace Corporation with permission.



2

The Problem
External 
Software 

(FEP, GSE, 
FSW, etc.)

C2
Linux 
Server

Linux
Process External

Key:

External 
Software 

(FEP, GSE, 
FSW, etc.)

External 
Software 

(FEP, GSE, 
FSW, etc.)

External 
Software 

(FEP, GSE, 
FSW, etc.)

External 
Software 

(FEP, GSE, 
FSW, etc.)

External 
Software 

(FEP, GSE, 
FSW, etc.)

External 
Software 

(FEP, GSE, 
FSW, etc.)

External 
Software 

(FEP, GSE, 
FSW, etc.)

Desktop
Telemetry 
Vis Tool

Desktop
Commanding

Tools

Archived
Data Tools



The Solution: Infrastructure

 Docker – Builds and runs containers –
Ideally one process per container

 Kubernetes – Organizes and orchestrates 
containers in “pods” – Provides networking, 
process monitoring, DNS, replication, and 
autoscaling

 Istio – Adds a proxy server to every pod that 
all network traffic goes through – Allows 
mTLS without any application changes, 
detailed built in monitoring metrics, and strict 
security rule enforcement

3/17/20203



Event Driven Asynchronous Comm

 Streaming Message Broker
– Provides a common asynchronous 

interface between the containers that 
make up the C2 system

– Scales easily to new satellites by simply 
adding more containers

– High performance from a simple internal 
architecture – streams are basically just 
files

– Primarily used to receive streaming 
telemetry

3/17/20204



5

Realtime Telemetry 
Microservices
Stack:
1 Interface

External 
Software 

(FEP, GSE, 
FSW, etc.)

Interface

Identify

Decom

Kubernetes/
Istio Cluster

External

Key:

Raw 
Data

Raw 
Packets

Decom
Packets

Identified 
Packets

Raw
Data

Decom
Packets

Raw
Packets

Identified
Packets



6

Realtime Telemetry 
Microservices
Stack:
1 Interface Limits

Monitor

Packet
Log

Writer

Web
User

Interface

Tlm
API

Kubernetes/
Istio Cluster

External

Key:

Raw Data 
Logging

(optional)

Raw 
Data

Raw 
Packets

Decom
Packets

Identified 
Packets

Raw
Data

Decom
Packets

Raw
Packets

Identified
Packets



Architecture Break #1: Docker
 Processes inside a 

docker container (1):

3/17/20207

 Processes inside a 
virtual machine (280!):



8

Realtime Command 
Microservices
Stack:
1 Interface

External 
Software 

(FEP, GSE, 
FSW, etc.)

Interface

Raw Data

Outgoing
Cmds

Cmd
Acks

Kubernetes/
Istio Cluster

External

Key:
Cmd
API

Packet
Log

Writer

Web
User

Interface

Raw Data 
Logging

(optional)

Outgoing
Cmds

Cmd
Acks

Raw
Data



Architecture Break #2: Kubernetes
 Config file to deploy a replicated app in Kubernetes:

3/17/20209

apiVersion: apps/v1
kind: Deployment
metadata:

name: nginx-deployment
labels:

app: nginx
spec:

replicas: 3
selector:

matchLabels:
app: nginx

template:
metadata:

labels:
app: nginx

spec:
containers:
- name: nginx

image: nginx:1.7.9
ports:
- containerPort: 80

---

apiVersion: v1
kind: Service
metadata:

name: nginx-service
spec:

selector:
app: nginx

ports:
- protocol: TCP

port: 80
targetPort: 80



10

Cmd/Tlm Microservices Stack: Infinite

External 
Software

Interface

Kubernetes/
Istio Cluster

External

Key:

Cmd/Tlm
API

Web
User

Interface
Cmd/Tlm

APICmd/Tlm
API

Web
User

Interface

Web
User

Interface

External 
Software

Interface

External 
Software

Interface
Identify/
Decom/
Other

Identify/
Decom/
Other

Identify/
Decom/
Other

(Replication)



Architecture Break #3: Istio

 Installing Istio with mTLS in auto mode:

3/17/202011

istioctl manifest apply --set profile=demo \
--set values.global.mtls.auto=true \
--set values.global.mtls.enabled=false



Summary

 Docker containers hold each microservice
 Kubernetes manages orchestrating and scaling 

microservices
 Istio provides encrypted communications between all 

microservices, and useful metrics
 Kafka provides an easily scalable message bus platform
 C2 architecture can be scaled to any number of 

interfaces, by adding more microservices and Kafka 
nodes when necessary

3/17/202012



Questions

 Keep up with C2 at Ball at: cosmosrb.com/news
3/17/202013

?



Backup Slides

3/17/202014



Scaling
 As additional satellites and ground support hardware are 

added, new Kafka nodes can be added to continually scale
 Microservices performing identification, decommutation, and 

packet logging can be created and assigned to one or more 
pieces of hardware as bandwidth dictates

 The overall Kubernetes cluster can be grown by adding 
additional hardware nodes at anytime.  In cloud environments, 
this can be done on demand.

 Additional PostgresSQL databases for archiving can be added 
to support unique new sets of hardware.  The API will handle 
querying the correct backend database.

3/17/202015



Reliability

 Kafka data is replicated and any node can fail with 
automatic failover and no downtime

 Kubernetes will automatically respawn any pod that 
dies

 Postgres Database can be setup with master-master 
replication to support automatic failover

3/17/202016



Security

 All internal C2 cluster data is encrypted and verified 
using mTLS as supported by Istio – This requires no 
changes to application code

 Istio policy ensures pods can only talk to other pods as 
required

 Ingress/Egress from the C2 cluster is secured by policy 
with only necessary access granted

 Kubernetes access is controlled by keys that are only 
available to admin users

3/17/202017



Docker and Containers

 Like Virtual Machines But Better…
 Dockerfile

– Text file captures the steps to build the 
container repeatably

 Lightweight
– Starts in seconds

 Ideally only one process running in 
each container

 Contains only what is needed to run 
the single process

3/17/202018



Kubernetes

 Orchestrates containers into groups called 
pods – starts them up and keeps them alive

 Provides an isolated network environment for 
the cluster and assigns them IP addresses / 
DNS names

 Provides load balancing for groups of 
containers

 Supports auto-scaling

3/17/202019



Istio

 Adds a controlled proxy container 
to every pod
– Enables Mutual TLS between pods 

with no changes to the application
– Allows setting security constraints ie. 

Pod X can only talk to pod Y
– Provides detailed built-in monitoring 

metrics, such as bandwidth in and out 
of each pod

3/17/202020


	An Open Architecture for an Infinitely Scalable C2 system using Docker, Kubernetes, and Istio
	Slide Number 2
	The Solution: Infrastructure
	Event Driven Asynchronous Comm
	Slide Number 5
	Slide Number 6
	Architecture Break #1: Docker
	Slide Number 8
	Architecture Break #2: Kubernetes
	Slide Number 10
	Architecture Break #3: Istio
	Summary
	Questions
	Backup Slides
	Scaling
	Reliability
	Security
	Docker and Containers
	Kubernetes
	Istio

