GSAW 2020 Tutorial A:

Model Based Systems Engineering for Ground Systems

Length: Full day

Overview:

- 1. MBSE Introduction and Overview
 - Overview of Model-Based Systems Engineering
 - Fundamental Concepts of Modeling
 - Models of Computation
 - Example Application of Models in Systems Engineering

2. Front End Diagrams

- Package Diagrams
 - Diagram, description, purpose, and benefits
 - Model organization
 - Package relationships (contains, imports, extends)
 - o Specialized packages: views/viewpoints, libraries, profiles
- Use Case Diagrams
 - Diagram description, purpose, and benefits
 - Use case, actor, and subject
 - Basic relationships: association, include, extend, and generalization
 - \circ Scenarios
- Requirements Diagrams
 - Relationship between requirements and use cases
 - o Creating requirements diagrams
 - o Requirements relationships to other model elements
 - o Representing requirements in tables and matrixes
 - o Building a use case model using the basic set of SysML constructs

3. Structure Diagrams

- Block Definition Diagrams
 - Definition vs. usage;
 - o Block features including value types, value properties, parts, references, and operations.
 - Block Definition Diagram description, purpose, and benefits; compartments; relationships between blocks including specialization and associations
 - \circ Multiplicities
- Internal Block Diagrams
 - o Internal Block Diagram description, purpose, and benefits
 - o Instantiations
 - enclosing blocks and representation of parts.
 - o flow ports and standard ports
 - o connectors and item flows
- Parametric Diagrams
 - \circ $\;$ Interpreting constraint blocks on Block Definition Diagrams
 - Parametric Diagram description, purpose, and benefits
 - o constraint properties, constraint parameters, and constraint expressions
 - o connecting constraint properties and value properties with binding connectors
 - o quantitative examples

4. Behavior Diagrams

- Activity Diagrams
 - Activity Diagram description, purpose, and benefits
 - o I/O flow including object flow, parameters and parameter nodes, and pins
 - o control flow including control nodes
 - o activity partitions (swimlanes)
 - $\circ \quad$ and actions including decomposition of activities using call behavior action
 - send signal action
 - \circ accept event action.
- Sequence Diagrams
 - *Messages; Lifelines:* Selectors, lifeline decomposition, Activations (including nested).
 - Interaction operators: Advanced interaction operators, Combining interaction operators, Nesting interaction operators.
 - Interaction Decomposition: Interaction Use or References, Gates.
 - *Constraints:* Observations and Timing Constraints, State invariants.
- State Machines
 - o State Machine Diagram description, purpose, and benefits
 - o states and regions including state, regions, initial state and final state
 - transitions including trigger by time and signal events, guard, and action (i.e. effect)
 - o and behaviors including entry, exit, and do

Instructor: Mark McKelvin Jr., The Aerospace Corporation

Biography:

Dr. Mark L. McKelvin, Jr. is a Senior Engineering Specialist in systems and software engineering at The Aerospace Corporation and President of the INCOSE-LA Chapter. Dr. McKelvin specializes in the use of model-based engineering techniques to develop solutions to architecture design challenges for cyberphysical and software-intensive systems. He is also a Lecturer in the System Architecting and Engineering graduate program at the University of Southern California, Viterbi School of Engineering where he teaches courses in Model-Based Systems Engineering and Systems Engineering Theory and Practice. Prior to joining the Aerospace Corporation, Dr. McKelvin worked at NASA/JPL as a software systems engineer, electrical systems engineer, and a lead fault protection engineer on a major flight system. His interests are in the application of modeling, analysis, and design of engineered systems, including cyber-physical, embedded, and software systems. He holds a Ph.D. in Electrical Engineering and Computer Sciences from the University of California, Berkeley with an emphasis in Electronic Design Automation and a Bachelor of Science in Electrical Engineering from Clark Atlanta University.

Description of Intended Students and Prerequisites:

Familiarity with ground systems architecture and general systems engineering processes.

What can Attendees Expect to Learn:

MBSE background and fundamentals, Types and uses of SysML diagrams, use of SysML in an MBSE process.