'Deloitte.:

Refactoring the Approach to Legacy
Appllcatlon Modernlzatlon |

'GSAW 2023

Content

1 Legacy System Challenges
2 I Application Modernization Solutions

3 I Transformation Approach

4 Transformation Example

5 Overall Modernization Approach

6 Transformation/Modernization Benefits
7 Approach Differentiators

© 2023 by Deloitte. Published by The Aerospace Corporation with permission.

Legacy Space System Challenges

The time to migrate is now. Organizations are plagued with workforce aging, low reskilling in legacy code, and a small pool of cleared
personnel. There is a growing demand for system modernization.

Legacy Space System Challenges Benefits of Modernization

High Costs Reduced Total Cost

Prolonged Reporting

Security & Risk

Enhanced Quality

Reduced Risk
Inefficiency Repeatable Approach

Mainframe Brain Drain Return on Investment

‘ System Misalignment

Dependency on few SMEs

OIDE

Enhanced Interoperability

%% Wider labor pool available

SIOIOIGIIVIC)

@ (s

© 2023 by Deloitte. Published by The Aerospace Corporation with permission.

Application Modernization Solutions

The integrated approach to refactor existing systems comprises of an end-to-end service to modernize systems with minimal risk and
disruption, creating opportunities for the adoption of new services and analytical opportunities.

Q

DISCOVERY MINING TRANSFORMATION LEGACY DEVOPS MODERNIZATION
Know your legacy code Understand the business Transform legacy code Use DevOps in legacy and Adopt cloud, mobile,
functions of code into modern languages modern environments microservices, analytics
and more

© 2023 by Deloitte. Published by The Aerospace Corporation with permission. 4

Transformation Approach

Refactoring and modernization enhancements occur in parallel tracks to deliver early and incremental progress over the life of the
project.

2 . . .

o Discovery Transformation Plan Refactor code, data, and user interface*
S

= * Deliver system » Develop plan (sequence, « Implement 100% automated process to refactor code, data, user
(44 inventory report timeline) for refactoring screens

8 (code, data, * Integrate code and data with interfaces and third-party software
‘£ interfaces) - Automate testing to validate new system is functionally equivalent
< Acclimate development team with Java programming language,
o tools, frameworks

-

g Future-state roadmap Modernization enhancements

=

N - Identify priority modernization * Analyze legacy system to derive requirements

> areas (e.g., analytics) * Implemented enhancements may include:

E + Create plan for subsequent * Analytics

() modernization steps * Business Rules Extraction

@) + Service-oriented architecture

= * Cloud deployment

Enhanced user interfaces
© 2023 by Deloitte. Published by The Aerospace Corporation with permission. 5
» Additional opportunities to initiate DevSecOps and/or Cyber activities

Transformation Example | From Cobol To Java

One-to-one conversion of all code to a modern language.

L1l Group W2 COMPARE
AP PIC X(26) LS PICX W2_TIM

group()
PICX(26):

81 wW2-COMPARE
25 wW2-T

ﬂ
:

85 W2- PROGRAMMAME PIC X(28) LS PICK SROGRAMNAME = PICX(8):
85 W2-NR-1 PIC 59(87 L5 PICO NR_1 = PICS_COMP3(“S3(@7
W2-MR-2 PIC S9{o7 LS PI W2_NR_2 PICS _COMP3{"SH(D7

PROCEDURE ProcedureDivision

DIVISION

PL-INITIALIZAYION SECTION. - wold P1_INITIALIZATION(G) {

MOVE DB2-NR-1 o CLCS -MR-1 move(DB2
SET INIT YO T RLSE SET(INIT
INITIALIZE HESSES4-PERSON Lnitiallze(HOSSO%4-PERSON) ;

NR_L, CICS-NR-

ruc);

PERFORM

Z01-INITIALIZATION perform("

IF HOT HGSS052- BCHANNE L¥ (reoT({mass
KS - ERROR - CODE TO CICS-ERROR-NA move (KS ERROA-NR) |
K5 -ERROR- TEXT TO CICS-ERROR-TEXT move (K5 -ERROR- TEXT, ERROR-TEXT))

goTa{ *PI_AFGIN_INSERT

P2 -AEGTN- TNSERT SECTTON, wold P2_REGTN_TNSERT() {

EXEC SQL execSql(
INSERT INTO TZS55316 inzsertIato(TZISS316)
{ TIS5316 PROGR TXT .colusns (TIS5316_PROGR TXT,

»TISS316
,TZ55316 LI
. TZS5316_
I1-PROGRAM
I1-TIMESTAMP
:Z1-LIST-NR
» 1 I1=LIST~NAP
END - EXEC sexecute();

TZSS316_
values(Z1l_PROGRAM |

VALUES

COMPUTE M3 -AMOUNT = H3-AMOUNT + K2-1 move (add (H3_
CZS5092- 10X 3 P - AMOUNT set(CIS5e92_I0X, H3 DUNT 3 ;
MOvE Il 10 CISSE9Z-TERT (CZ3S0U2-INUEX) move(Il 1EXTrIELD,

OUNT, K2_1), HI_AMOUNT):

TEXTFIELD eN{CLISOYZ IMDER))]

© 2023 by Deloitte. Published by The Aerospace Corporation with permission.

Overall Modernization Approach

STEP 1

Refactor legacy
code & data

STEP 2

Assess current state

An integrated approach to transforming legacy code into efficient, modern apps.

STEP 3

Determine cloud

STEP 4

Make apps

STEP 5A/58B

Building laas & Cloud-
native apps

after refactoring

modernization strategy

cloud-ready

Convert old code
and data to a
modern
language/datatypes*

Integrate code &
data

Validate system
functionality

Acclimate
developers to Java

Migrate code to laaS

Select applications
based on
functionality &
priorities

Identify apps that
address specific
business needs

Assess apps for
cloud sustainability

© 2023 by Deloitte. Published by The Aerospace Corporation with permission.

 Refine: Identify
apps that can be
modernized

» Replace: Move
apps to cloud &
retire existing
applications

* Enhance: Identify
apps that can be
made cloud-native

Design app as
services, then
combine services

Decouple data &
separate
components

Revise APIs
between apps

Design for scaling
& performance

+ 5a: Build laas apps

 5pb: Build Cloud-
native apps

* Modern user experiences can be achieved
as early as step 1 with Ul redesign

Transformation/Modernization Benefits

Transformation can help boost efficiencies, reduce risks and costs, and prepare your organization to implement new technologies.

Reduced risk Reduced total cost
No functional requirements, no changes in Refactoring prior to modernization reduces é
functionality, minimal end-user training need for mainframe developers; rapid

migration can quickly cut operational costs

Enhanced quality Enhanced interoperability
1-to-1 test scenarios deliver highly accurate Mobile and Web services apps streamline
releases, without interruption to business interoperability and relational databases result

in easier future changes

Repeatable approach Staff Transition
Agile application development life cycle Refactoring supports legacy developers'
provides a controllable process to coordinate transition into modern Java developers by
releases building on their legacy skillsets

© 2023 by Deloitte. Published by The Aerospace Corporation with permission. 8

Approach Differentiators

An end-to-end, 100% automated application modernization results in a fully functional updated system with no performance disruption.

EXPANSIVE FULLY
NETWORK AUTOMATED
Highly skilled Innovative software

refactors all code
and preserves
functionality

employees across
geographies

Building

a technology

foundation for

the future
END-TO-END NO CODE FREEZE
SOLUTION Update legacy
One trusted vendor systems, often

for the entire project without disruption

© 2023 by Deloitte. Published by The Aerospace Corporation with permission.

	Refactoring the Approach to Legacy Application Modernization ��GSAW 2023���
	Content
	Legacy Space System Challenges
	Application Modernization Solutions
	Transformation Approach
	Transformation Example | From Cobol To Java
	Overall Modernization Approach
	Transformation/Modernization Benefits
	Approach Differentiators

