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XPAS is the Controlling Hub of the iPNT XGEO Architecture 

Future missions in XGEO space will require cost-effective PNT

The Aerospace Corporation’s iPNT concept requires no new spacecraft or ground stations—

only XPAS, the ground-based control system that is the subject of this paper

The XGEO PNT Automated Scheduler (XPAS) will 

• Maintain a database of XGEO missions and participating government and commercial ground 
antennas 

• Receive PNT requests from XGEO missions (scheduled or on demand)

• Identify the best-located antenna to upload the iPNT signal  and request support

Available ground antennas will execute the uploads and confirm to XPAS

The XPAS architecture will be scalable to XGEO missions and ground antennas for spacecraft with 

various orbits, missions, security requirements, priorities, accuracy requirements, timeliness, etc.

XPAS will be virtually automatic, with minimal personnel; we intend it to run on a PC or equivalent

This presentation updates our GSAW 2022 presentation by revisiting potential algorithms and 

focusing on developing and assessing the automated scheduling portion of XPAS
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iPNT in XGEO
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Developing XPAS: a High-level Centralized Architecture

• Users send requests asynchronously

• The central node examines current schedule and finds 

best time slot across the ground stations (GS) with

– Suitable communication path with sufficient power to 

reach user

– Either an empty time slot or capacity to move an 

existing scheduled communication to a different GS 

or time slot to enable a new communication

• When the central node receives an acknowledgement 

(ACK or NACK) from a user, it relays the ACK/NACK to 

requesting customer

• The central node stores all messaging and scheduling in 

one of two ways:

– Distributed cloud architecture

– Replicate all user information at each customer site

• Customers and users can access messaging and 

scheduling that pertains to their requests
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After GSAW 2022, we began investigating architecture considerations
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Developing XPAS: a High-level Decentralized Architecture

• Users send requests asynchronously

• The XPAS central node selects an XPAS decentralized node and passes it a user request

• The XPAS decentralized node examines schedule and determines if it can meet a request, along 

with the request value and the quality

– If it can meet request, it reports its ability to meet the request along with PNT value/quality

– If cannot meet request, it declines

• The XPAS central node compares opportunities from each GS and chooses the best one

– If it removes a future scheduled request that is less important than the current request, the central node 
attempts to reschedule across all GS

• When the central node receives an acknowledgement (ACK or NACK) from the user, it relays the 

ACK/NACK to requesting customer

We will use modeling & simulation to select between centralized or decentralized architecture
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Key Architecture Parameters

• Ground stations

– Number and location

– Tx/Rx strength, frequencies, bandwidth, etc.

– Slew time parameters (acceleration, velocity, function)

– Duty cycle

– Estimated time/power required to send each signal

• Users

– Rx/Tx strength, frequencies, bandwidth, etc.:                                   

will this spacecraft receive more than it transmits?

– Receiver sensitivity 

– Base value of spacecraft (mission importance)

• Ground station-to-spacecraft Tx/Rx parameters

– Distance, timing, etc.

• Orbit estimation stability/variability – position 

estimate degradation over time

• Impact on quality and value of collection 

angles, Tx and Rx parameters, etc.

For GSAW 2023, we identified key architecture parameters but still need actual values

We intend XPAS to be responsive to such parameters and to be scalable to quantities of customers
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We Are Designing XPAS to a Flexible and Evolving CONOPS
We will accommodate a broad range of key parameters and metrics

• Number and location of ground stations

• For each ground station, performance parameters

– Signal strength, frequency, bandwidth, etc.

– Duty cycle

– Available computation capacity (usually not a problem if on the ground)

– Quantified model of effect of key parameters that influence satellite receiver PNT signal strength/quality

– Associated estimates of time/power required to send each signal

– Slew time functions

• Orbit estimation stability/variability – position estimate degradation over time

• Receiver sensitivity of each PNT customer

• Relative importance of each customer
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What Do We Need in the CONOPS for Cost-effectiveness?

• Can we improve on the assumption that “customers will have to pay more for higher-tier service”?

– An economic model can obviate tiers and provide better optimization

– Adjusting collection value by parameters can simplify and improve performance

• “On a fixed schedule thereafter or upon request,” the system sends PNT

– Fixing the schedule a priori is an easier solution because there is much less schedule disruption

• Disruption would be caused by orbital changes that require modifications to pointing or unplanned requests for PNT (such as 
engine burns to modify trajectories)

– Can we presume that, even if a fixed schedule is the ideal, we will still need to make changes to it because of orbit 

drift?

• It will be at least somewhat dynamic

• At the very least, even with ‘fixed’ scheduling, the scheduler will need repair due to orbit drift

• When tasking cadence is in competition, do we solve by lengthening the time between collects uniformly for 

all satellites?  

– E.g., if User A is intended to receive PNT Y times per month, and User B is intended to receive PNT 2Y times per 

month, do both decrease by the same factor? Or does User B not get cut back while User A is cut back drastically?

Prioritization and payment models are important drivers for success
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Revisiting Algorithms: AI-ML Enabled Automated Scheduling Algorithms
Brief definitions & descriptions updating our GSAW 2022 presentation

Genetic [1,2] Deep Reinforcement Learning [3]
Reinforcement Learning for       

Multi-agent Scheduling [4]

Definition

A machine learning 

technique that uses an 

evolution-based heuristic.

AI that combines deep learning & 

reinforcement learning

An event-driven decision process that 

sequentially assigns agents the best 
feasible tasks when they finish the 
previous task 

Description

Steps for learning using a 

genetic algorithm [1]:

1. Create an initial 

population

2. Perform mating and 

mutation to improve the 

population

3. Assign a fitness score to 

each individual in the 

population

4. Pass the fittest individuals 

on to the next population

Fundamentally represented as a 

Markov Decision Process

Typically consists of an agent that 

interacts with an environment by 

observing rewards for actions that it 

takes

Steps for learning the best new task 

for each agent:
1. Create an agent-task graph
2. Choose best cooperative task 

assignment for idle agents in a 
computationally efficient manner, 

using a softmax function across the 
tasks

3. Apply a simple normalized reward 

between the current policy and 
baseline policy
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Revisiting Algorithms: Non-AI-ML Automated Scheduling Algorithms
Brief definitions & descriptions updating our GSAW 2022 presentation

Greedy [1]
Mixed-integer Linear 

Programming [2]
Combinatorial Optimization [3]

AFSCN Manual 

Scheduling Program 
(ASP) [4]

Definition

Heuristic optimization approach 

that makes the locally optimal 

choice at each stage of the 

computation with the hope of 

finding a global optimum

Solves a problem with a linear objective 

function, bounds, linear but no nonlinear 

constraints, & some objective function 

components having integer values

Search process for finding an optimal 

solution within a finite set of possible 

solutions: during the search, the 

algorithm evaluates each solution, 

returning the solution with the best 

value at the end of the search

Air Force Satellite Control 

Network (AFSCN) Scheduling 

Program (ASP)

Description

Comprises five components:

1. Candidate set from which 

solution is created

2. Selection function chooses 

best candidate to add to the 

solution

3. Feasibility function 

determines if a candidate 

contributes to a solution

4. Objective function assigns a 

value to a complete or partial 

solution

5. Solution function indicates 

when a complete solution 

has been discovered

Popular approach in Operations 

Research applications

The approach is defined by the 

problems it can solve: i.e., the 

objective function must be linear; 

constraints must be linear; and at least 

some components of the objective 

function must have integer values

Popular approach in Operations 

Research applications

Two components allow “intelligent” 

decisions:

1. Objective function, which evaluates 

quality of a solution

2. The algorithm that combines 

stepwise choices to build a solutions

Description: manual 

scheduling technique that uses 

heuristics to simulate the 

actions of Air Force personnel

Inputs: satellite orbital 

elements, ground station 

lat/lon/alt, antenna locations, 

antenna visibility constraints, 

desired outputs

Outputs: visibility plots, 

antenna sites, supported/non-

supported satellites, statistics
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AI-ML Candidate Algorithm Pros & Cons
Last year’s presentation only mentioned genetic and deep reinforcement learning

Genetic [1-3] Deep Reinforcement Learning [4] RL for Multi-agent Scheduling [5]

Pros

• Well-established general purpose 

multi-objective optimizer

• Flexible for multi-band multi-

mode sensors

• Likely to reach a usable solution

• JPL published a 2021 paper 

recommending this approach for 

NASA Deep Space Network (DSN) 

scheduling, which is a problem of 

comparable scope to XGEO iPNT

automated scheduling

• Straightforward algorithm that 

creates workable solutions quickly

• Assigns tasks to agents that are 

idle

Cons

• Not necessarily the best for 

automated scheduling

• Operation time > greedy

• Intense compute resources 

required

• Not interpretable for decision 

makers

• Has been used by Aerospace to 

develop planned schedule but 

not actual one adjusted based on 

request (i.e., a schedule request 

that perturbs scheduling, 

requiring a revised schedule)

• Not interpretable for decision 

makers

• Applies a Markov Decision Process 

at each event

• Sequential decision process that 

only looks at currently idle agents 

at each event – looking ahead 

would increase performance at the 

cost of increased computation time
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Non-AI-ML Candidate Algorithm Pros & Cons
This year, we identified more candidate non-AI-ML algorithms, too, like combinatorial optimization

Greedy [1,2]
Mixed-integer Linear 

Programming [1]
Combinatorial Optimization [3]

AFSCN Manual 

Scheduling Program 
(ASP) [4]

Pros

• Faster than genetic for non-

contentious scheduling 

problems

• More interpretable for 

decision makers than 

genetic

• Deterministic

• Interpretable

• Well-established for severely 

contentious scheduling problems 

with tightly packed contacts with 

very little gap time

• Scheduling tiers sequentially “bakes 

in” priorities

• Aerospace has experience applying 

this approach in a distributed form for 

a problem of similar scope and sees 

a straightforward path forward for 

extending it to XGEO iPNT 

automated scheduling

• Expected to recover from 

perturbations more quickly than AI-

ML like deep reinforcement learning

• Method is interpretable for decision 

makers

• Deterministic

• Interpretable

• Well-established

Cons

• Generally does not provide 

globally optimized solutions

• Not interpretable for 

decision makers

• Not recommended for 

problems with sub-problems 

that require optimization 

(e.g., sorting problems)

• Not AI-ML so not adaptive

• Can only optimize one objective—

e.g., requires scheduling tiers 

sequentially

• Can get stuck in local rather than 

global maxima/minima—requires 

carefully designed heuristics or 

memory to avoid this pitfall

• Long execution time 

compared to automated 

methods

• Not easy to scale
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What’s next? Prepare for and hold an algorithm “Bake-off”…
Implement & compare Deep Reinforcement Learning & Combinatorial Optimization vs Manual 

Preparation

• Obtain the detailed CONOPS or make assumptions required to evaluate performance

• Obtain or reproduce JPL’s deep reinforcement learning algorithm onto a compute platform

• Obtain ore reproduce a combinatorial optimization algorithm onto a compute platform

• Obtain or reproduce a manual scheduling algorithm onto a compute platform

Assumption

• The solution team will use the Aerospace AI/autonomy Solution Architecting process (AASA), which 

includes the Aerospace Trusted AI (TAI) Framework, to select or develop the best algorithm & assess it

– The AASA and the TAI Framework processes support whichever algorithm is shown to work best

– The solution team will assess the prototypes using Aerospace’s digital engineering crawl -walk-run testbeds 

• E.g., to determine whether centralized or distributed automated scheduling is preferable

Evaluation

• Verify expectations using modeling & simulation:

– Combinatorial optimization should recover better from perturbations created by scheduling requests

– Centralized automated scheduling with a hot back-up capability for redundancy should suffice

• Verify how the three candidate algorithms perform & design the architecture around the best choice
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The Way Forward
We need your engagement and help

• We recommend automated scheduling to support the emerging urgent need for reliable, cost-effective PNT 

infrastructure to accommodate proliferation in XGEO

• Since presenting last year, we understand the trade space better and have identified the most promising 

candidate algorithms to prototype and assess

• We also have digital engineering processes & testbeds for developing and assessing our prototypes

• However, we still need your input to flesh out the CONOPS and performance metrics for the XPAS

• We hope that this presentation continues the dialog we opened last year—we want to hear from you:

– What have you tried? 

– What were your lessons learned? 

– What do you recommend?

Thanks!
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Summary
We still need your engagement and help

We recommend automated scheduling to support the emerging urgent need for reliable, cost-effective PNT 

infrastructure to accommodate proliferation in XGEO.

Since presenting last year, we understand the trade space better and have identified the most promising 

candidate algorithms to prototype and assess.

We also have digital engineering processes & testbeds for developing and assessing our prototypes.

However, we still need your input to flesh out the CONOPS and performance metrics for the XPAS. 

For example, does it make sense to you to assume that each upload takes 

5, 10, or 30 minutes with 1, 2, or 5 simultaneous uploads 

and 10, 50, or 100 active customers and compare how XPAS performs vs manual scheduling?

We hope that this presentation continues the dialog we opened last year—we want to hear from you.

What have you tried? What were your lessons learned? What do you recommend?

THANKS!
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Additional Details

• Additional details for implementing XPAS

• Sample application: Digital Engineering testbeds for confidence-building

• Material from our GSAW 2022 presentation on XPAS
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XPAS Algorithm Implementation Considerations
Investigating more algorithms for GSAW 2023 led us to consider how to implement them

• Agents: XPAS node(s) processing the collections

• States: discrete points that mark the path of an agent. Some states will be targets.

• Actions: an agent can either add a target to the schedule or move on to the next state

• Rewards: the rewards for each target would be weighted depending on the user priority, geometry, etc. 

– Rewards ensure that there is no unintentional duplication of effort (i.e., multiple agents aren’t collecting 

the same targets)

• Simulations for training agents may be available from a library like OpenAI Gym
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Resource Allocation Model & Scenarios
This material updates our GSAW 2022 presentation

Upload (min) # Simultaneous 

Uploads

Active 

Customers

5 1 10

10 2 50 

30 5 100

Resource Allocation

• Some ground station–satellite signals are better at certain times:

– Elevation angle from ground to satellite

– Ground station signal strength

– Target satellite receiver strength

– Etc.

• These parameters should influence pairing of ground stations to satellites

Scenarios

1. Single user

• Verify reliably finding an optimal solution to minimize use of resources to meet the user’s request

2. Two users

• Demonstrate consistent ability to solve the over-constrained problem when scheduling to support User 
A meets a request from User B that conflicts the existing scheduling

3. Multiple users

• Demonstrate that the scheduling solution scales up appropriately or identify when/why it breaks down
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Additional Assumptions for XPAS
This material updates our GSAW 2023 presentation

XPAS assumes dynamic scheduling

• A fixed schedule created to fill a long pre-specified period (a day or week) is easier to develop and requires 

less computation 

• New requests after the schedule is completed cause disruption, but, for many applications, disruptive 

requests are common 

Transmission quality

• Transmission quality is a function of the quality of the Tx, Rx, pointing accuracy, and geometry 

• Transmission quality is not binary (either “good enough” or “not good enough”)
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Lab, Field, & In-space Testbeds Work Together in Crawl, Walk, Run for 

Confidence Building

Aerospace’s lab, field, and in-space testbeds work together to support spiral development and test approaches

Testbed       Demonstrations

Environment with M&S, Analysis, SiTL, & HiTL Tools

Testing in the Instrumented CAVE Lab Field testing with UAS In-space AI/autonomy testing with Edge Node

Digital twin 

in digital engineering (DE)

Digital 

twin in DE

Digital twin 

in DE

Comms are 
OK; 

everything is 
working

Aerospace’s testbeds 

coordinate through digital 

engineering 

The digital twin developed in 

software matures in fidelity as 

work proceeds through the 

testbeds

Edge Node

Everything 
is working

Doors 
NG

Cameo Syndeia Huddle

PDST SEC DASEE Aspen

ASOTs

Crawl Walk Run
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XGEO PNT Problem & Solution Statements

The 2023 presentation updates the 2022 presentation on the automated scheduling portion of the iPNT solution

Problem Statement: Need PNT in XGEO

• Users in XGEO orbits (i.e., operating beyond GEO) 

need position-navigation-timing (PNT) solutions 
that are accurate and timely

• Existing PNT systems are not optimized for XGEO

– Approaches like iPNT can solve this problem, but, in 

turn, they can create potential traffic overloads

• Various users will present with various needs

– E.g.,. A military user may need a high-priority solution 

to perform a maneuver while a commercial user just 

needs an answer within the next 30 minutes

• Sometimes, user needs will conflict

– In some cases, satisfying one user request will leave 

one or more other requests unsatisfied

– More users = more conflict

Solution Statement: iPNT for XGEO 

• Our inverted PNT (iPNT) approach can optimize a 

PNT solution for XGEO 

• Existing ground stations would provide PNT 

solutions based on scheduling user requests

– The iPNT system must accept the ground and space 

elements as they are 

– The iPNT system must not add costly requirements

• Automated scheduling will minimize the degree to 
which satisfying one requests causes other 

requests to go unsatisfied
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XGEO iPNT Scheduling Problem & Solution Statements

Problem Statement: Need Scheduling

• Manually-based systems require human operators

• As XGEO users proliferate, more operators will be 

needed to keep up with demand for PNT solutions

• Time to provide scheduling increases with 

proliferation of users as complexity rises and 
conflicts become more frequent

• Scale will rise to the point that hiring more 

operators becomes untenable

• Retrofitting a manual solution with automation after 

the fact is much more difficult than building in the 

needed AI/autonomy from inception

– E.g., it is often more challenging to get buy-in from 

humans using the system to trust it

Solution Statement: AI-ML Automated Scheduling

• We propose an automated scheduling solution 

because it can accommodate increasing numbers 
of users without increasing human workload or 

response time

– No need to hire more and more operators 

• iPNT scheduling is amenable to AI-enabled 
automated scheduling

– The inputs, outputs, and concept of operations can 

be defined for a growing number of users and for 

changing conditions

– Of the automated scheduling solutions we’re aware of 

so far, AI-ML seems the most promising because it 

can adapt to these changes

– Specification of performance and how to monitor and 

control as well as when, why, and how to retrain or 

replace the AI-ML would produce an AI-enabled 

solution that builds in trust
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How do we expect our iPNT system to work?
And what is the XPAS automated scheduler’s role?

Before launch, each customer agrees to an Interface Control Document (ICD) with the system that specifies 

technical configuration, mission needs, and CONOPS

Upon launch, the new mission sends a “launch confirmation” to the system to allow an initial PNT fix

The system sends a PNT upload to the customer’s spacecraft, and its control center confirms receipt, 

closing the loop between the system and the spacecraft

On a fixed schedule thereafter or upon request, the system uploads a PNT solution by aiming antennas at 

the calculated spacecraft position, and the spacecraft control center confirms receipt

The process continues for the life of the spacecraft mission, with requirements changing as the mission 

proceeds either in accordance with the ICD or changes to the ICD based on the evolving situation

XGEO PNT Automated Scheduling (XPAS) is responsible for efficiently managing this process without 

human intervention
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Focus on Automated Scheduling for Solution Scalability & Longevity
This work on automated scheduling to support XGEO PNT is just beginning

We intend to map out the software, process, test cases, and next steps needed for a complete XGEO PNT 

scheduling solution—not to solve the problem but to show that we can solve it

• The XGEO PNT problem has many parts

– These include orbital mechanics, user requirements (e.g., solution accuracies, response times for timeliness, 

update frequencies), safeguarding/firewalling sensitive user information, timely allocation of ground resources, etc.

– Latencies and limited availability of ground resources require an infrastructure for managing solutions, especially 

when user needs conflict

• As PNT needs in XGEO proliferate, manual scheduling will be overcome by needs and challenges

– Manual scheduling comes with high operation cost due to negotiation and human-in-loop, time required to 

schedule, system scalability

– Automation can run 24/7, reduce time to produce scheduling solutions while requiring fewer human operators, and 

scale up without increasing costs; thus, automated scheduling is key to this PNT infrastructure

• Multi-variable optimization techniques will be required to coordinate across potentially competing 

variables and user needs

• We intend to identify an appropriate automated scheduling approach, cost function(s), quality of service 

metric(s), and a concept of operations for the levels of service we propose

– We will initially demonstrate single representative use cases and scale up to supporting proliferated constellations

– Fundamental modeling and simulation is part of this effort, starting with selecting candidate algorithms and testing 

them for one user at a time and scaling up
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Working toward an AI-enabled Automated Scheduling Solution
Aerospace has a process for developing trustworthy AI-enabled solutions

Complexity of the CONOPS, considerations, & constraints drive the AI design. The following slides give a taste of 

this analysis to help show that the automated scheduling problem is tractable and amenable to AI -ML.

Aerospace AI Solution 
Architecting Process

Perform the model trade 
analyses

Select or design the 
model

Use the Trusted AI Framework to build 
trust in the model in from inception

Software and hardware 
architectures require 

iterative co-design to build 
in tests, monitoring, and 

control for trust

Model architecture requires 
optimization:
• Model size, Data sources
• Languages, Libraries
• Accuracy

• More complex model 
• Harder to train 
• More data, compute 

resources 
• Simplicity 

• Smaller model
• Fewer parameters 
• Less data, compute 

resources
• Might reduce 

overfitting
• Transfer learning vs 

learning from scratch

Use AI Solution 
Architecture inputs, e.g., 
trades, to select/design a 
feasible, appropriately 
sized model:
• CONOPS
• Considerations
• AI/Autonomy needs
• Model size
• Data needs and 

availability
• Data sources, 

quality, etc. (5Vs)
• Design of and 5V 

requirements for 
simulated data

• Ceiling analysis
• Hardware constraints

Trusted AI is a nascent field requiring explicit definitions 

into meaningful, generalizable, measurable, and testable
attributes. High consequence environments often entail high 

risk in mission criticality, algorithm complexity to meet mission 
criticality and complexity, and level of autonomy to meet issues 

like communications latency. data volume, etc.; technical, cost, 

and schedule risks must be quantified so they can be mitigated

Identify AI/ 
Autonomy, 

TRLs

Software, 
Hardware 

Architectures

Develop, Test 
Prototypes

Demos

CONOPS

Considerations
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Considerations
Needs & Scenarios

Needs

• What is needed is a feasible scheduling solution set that avoids saturating XGEO ground stations and 

resolves request conflicts

• Automate the operation as much as possible (currently, scheduling is done manually)

– Automated operation would make our iPNT solution more scalable and affordable

Scenarios 

We will identify candidate automated scheduling algorithms, implement one (possibly more, if a “bake-off” is 
merited), and see how the algorithm(s) perform in the following scenarios

– Ensure correct implementation and understand which conditions lead to the algorithm(s) bottle-necking

1. Single user

• Verify reliably finding an optimal solution to minimize use of resources to meet the user’s request

2. Two users

• Demonstrate consistent ability to solve the over-constrained problem when scheduling to support 

User A meets a request from User B that conflicts the existing scheduling

3. Multiple users

• Demonstrate that the scheduling solution scales up appropriately or identify when/why it breaks down
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Considerations
Constraints & Objectives

Growth 

• The system should be “elastic” to grow seamlessly to support hundreds of XGEO spacecraft

Minimize equipment needs 

• The system should employ the minimum quantity of ground stations and the time needed from each

Minimize costs  

• The system should avoid any “standing Army” (i.e., scaling up should not require increasing numbers of 

operators)

Mission capable 

• The system must meet every “customer’s” needs for timeliness and precision

System efficiency 

• The system must allocate resources in real time to avoid resource allocation conflicts
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A Few Assumptions
Different users will have different needs; more users will have more needs

Customers will have to pay more for higher-tier service. Automated scheduling caps those costs because growing 

numbers of users will not require hiring of greater numbers of operators. 

We assume a three-tiered service to accommodate a variety of users with a variety of needs

Gold tier

• Users requiring the most urgent solutions, the highest update frequencies, etc.

• Example: military users about to perform maneuvers; commercial customers who need spacecraft PNT 
to assess whether their launch succeeded

Silver tier

• Users that can tolerate some delay or that require somewhat less frequent updates

• Example: routine but regular military, science, or commercial users

Bronze tier

• Users that can tolerate more scheduling interruptions to accommodate top-priority users or that require 

even less frequent updates

• Example: routine commercial users
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• Automation (AN): machine takes action 
where there is no uncertainty

• Autonomy (AY): machine makes decisions 
and takes action to manage uncertainty

• Machine Learning (ML): in a learning 
system, performance improves with 
experience

• Artificial Intelligence (AI): machine does 
what a human normally would do

• Expert System (ES):  AI using rules-based 
reasoning that captures human expert 
decision processes

XGEO PNT Automated 

Scheduler (XPAS)

Activity Diagram

• We assume gold, silver, and 
bronze tiers of PNT service 

users in XGEO

• As this activity diagram 

shows, XPAS must schedule 

PNT solutions by tier priority 
and satisfy new requests 

without disrupting servicing 

of existing requests

Legend
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Activity Diagram Details
This use case covers AI/autonomy for the proposed XGEO PNT system

• In general, this is a resource allocation planning and scheduling problem 

– Very similar to the Deep Space Network (DSN) scheduling problem

• In this use case, PNT signals are sent ONLY from ground stations to user spacecraft beyond 
geosynchronous orbit

– At a later date, we may examine adding space-based signals.

• ~20 ground stations form the basis of the XGEO iPNT system

– Each ground station has a narrow spot beam that can be quickly re-pointed to different user spacecraft

– This gives ~20 dB advantage over an omni antenna to overcome the 1/R2 space loss

– XGEO ground stations will have zero impact on the existing GPS ground stations and satellites

• The automated scheduling notions presented here help the XGEO iPNT system provide updates to 

customer spacecraft (aka “users”)

– The scope of AI/autonomy here is to plan and schedule resource allocation to service user PNT 

– This includes minimizing operations staff, optimizing link parameters and filter parameters, accommodating 

dynamic priority levels for customer service, and navigation requirements that vary over mission phases

– For example, position and velocity accuracy requirements may increase before and after a maneuver

• Planning and scheduling algorithms must also integrate with simulations that drive system design to 
create new ground stations and transmitters

– Thus, the AI/autonomy should integrate with Model Based System Engineering or digital engineering models
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Activity Diagram Details
Pre-conditions & assumptions for the XGEO iPNT system (i.e., the “system”) and customers/users

• At start of use case, the system has an existing 

solution set for schedule and link parameters for all 

customer spacecraft (“users”) 

• The system “knows” user receiver and filter 

capabilities

• The system can simulate performance of user 

receiver and Kalman filter

• System can point spot beams

• System has a high-fidelity model of its own capacity 

envelope

– Number of users it can service

– User-required accuracies and ranges

– Includes a digital engineering analysis framework

• System maintains a sophisticated priority scheme for 

customers that include timing and mission phase

– Some customers may have higher priority in certain 

mission phases and lower priority in other phases

• Customers know the system capabilities

– Documented in generic User's Guide and customer-

specific Interface Control Document (ICD)

• ICD defines user communication protocol and more

– Maximum range etc. are documented in the ICD.

– System can change contact schedule (with same or 

worse timing and accuracy for low priority customers) per 

terms in the ICD with automatic notification to affected 

users but without negotiation with them

– Customers consent to terms defined in ICD

• Users maintain Kalman filters onboard

• Customer ephemeris is accurate enough to enable 

system to point spot beams

• Customer ground/operations send ephemeris updates 
to system periodically

– System always has latest ephemeris for spacecraft

• Customer maintains own operations team and 

navigation capabilities
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Activity Diagram Details
Outcomes/post-conditions, exceptions/caveats, and AI, ML, and autonomy requirements 

Outcomes and post-conditions

• Customer spacecraft receives enough contacts to enable the customer to generate updated ephemeris 

with required accuracy

Exceptions and caveats

• Interference and threats

• A feasible solution space cannot be found even after rearranging other customers' contact schedules

AI, ML, and autonomy requirements

• The primary need is for automated planning and scheduling to find a feasible solution set that avoids 
saturating the ground stations with PNT requests.

– There are two versions of an AI-enabled solution: one where the algorithm is constrained to not violate other 

customers' contact schedules and another where the algorithm can change others' contact schedules

• AI may also play a role in optimizing contact schedules to minimize resource utilization

– In this case, resource utilization can mean contact duration, but the objective function may contain additional terms

– For example, the objective function may include operational cost (staff, power transmission, etc.)

• Other parts of the iPNT system may also require automation
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Are real time instructions or responses required?

How hostile or benign is the operating environment?

Are there more nodes than human operators can control?

Is there data/model/environment uncertainty? If so, where and how much?

5Vs of Data: Volume, Velocity, Variety, Veracity Value?

Is the data imagery? Telemetry? Other signals?

What size data? How frequent? Streams or batches?

What fidelity is required or expected?

Does distance latency preclude real time comms?

How well can the system, control, and environment be modeled?

How much can be accomplished using non-AI/autonomy?

How do human operators make decisions with similar systems today?

What are the current policies, and how do they intersect with this mission?

Is the operational team a constraint, or is it subject to design?

Cost/schedule/risk? Supplier skill sets? Test capabilities?

If AI/autonomy is required, where, which, and how much?

AI-ML/autonomy trade space: what does a solution landscape look like?
Factors like those illustrated below drive whether, which, and where for using AI/autonomy

What we know:

• Autonomy is required to make our XPAS scheduling 

solution sustainable as the population of users scales up

– We expect to have to interleave among priorities

• Real-time PNT may not be needed or feasible

• Processing will be centralized on the ground 
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Candidate algorithms: which are best for automated scheduling?
We are researching which algorithms to implement (e.g., for a bake-off)

AI-ML

• ML 

– Supervised

• Support Vector Machines

• Bayesian networks
– Unsupervised

• Clustering (e.g., k-means, hierarchical, fuzzy 

c-means

• Principal Component Analysis

• Genetic algorithms
– Reinforcement

• Q-learning, W-learning

• AI

– Neural Networks 

• Configurations include feed-forward, deep, 
recurrent, etc.

• Applications include anomaly detection, 

identification/classification, computer vision, 

regression for solution optimization, etc.

Non-AI-ML (e.g., statistical, optimal control, etc.)

• Multi-objective optimization (e.g., Pareto, in which 

improving one factor degrades at least one other)

• Greedy algorithms

• Decision theory
• Mixed-integer linear programming

• Rulebases, including fuzzy

Each technique has benefits and drawbacks

• Approaches that learn and evolve over time are more 

resilient to changing conditions (e.g., onboard sensor 

degradation, environmental changes)

– However, they pose challenges for trust (e.g., 

interpretability, maintaining performance over time as 

conditions change, etc.)

Two promising approaches we will explore:

• Genetic algorithms are useful for parallelization and 

multi-objective optimization—solutions improve over 

time—and Aerospace is using them for scheduling

• JPL developed a deep reinforcement learning neural 

network for Deep Space Network scheduling
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Next Steps for XPAS
We need your engagement and your help

There is a need for reliable, cost-effective PNT infrastructure to accommodate proliferation in XGEO.

An iPNT solution minimizes cost, schedule, risk. To maximize elasticity, automated scheduling is needed.

We believe the automated scheduling problem is tractable and amenable to AI-ML, hence XPAS.

This work is only beginning, so next steps include, for example, laying out the trade space so that we can 
select candidate algorithms and perform modeling and simulation to see which to implement.

Part of this includes identifying performance metrics for the XPAS AI-enabled automated scheduler, 

Identifying figures of merit for the PNT service, etc. For example, we need measures of effectiveness we 

can compare against a manual system as a function of system parameters. 

For example, we can assume that each upload takes 5, 10, or 30 minutes with 1, 2, or 5 simultaneous 

uploads and 10, 50, or 100 active customers and compare how XPAS performs vs manual scheduling.

We hope that this presentation opens a dialog so that we can hear from you.

What have you tried? What were your lessons learned? What do you recommend?

THANKS!
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Sponsorship

As an FFRDC, Aerospace is a trusted partner for handling sensitive information 

without entanglements that for-profit contractors could encounter

We can also help commercial and academic interests who might also operate in XGEO

Opening the playing field to commercial users should increase our overall agility for operating in XGEO

This work has been funded in part by Space Systems Command, Office of the Portfolio Architect


