Lessons Learned from Managing Complex MBSE Models

Julie Fant, PhD, Julia Eng, Megan Fisher, and Sylvia Kohn-Rich, PhD

The Aerospace Corporation

March 1, 2023
Agenda

• Introduction to the project and MBSE value-based approach
 – Government reference model with traceability from user stories and requirements to subsystems

• Best Practices
 – Requirements Generation and Requirements Gap Analysis - Tracing
 – Architecture Model as a Communications Medium Across Government, Contractors – Exports
 – Understanding how the enterprise achieves user stories
 – Locating and Filtering Data

• Lessons Learned
 – Model Diagram Aesthetics
 – Model Maintenance and Technical Debt
 – Model Collaboration Across Networks

• Conclusion
Introduction

• This MBSE project involved creating a government reference model of the enterprise with traceability from user stories and requirements to subsystems to support RFP development

• Scope
 – *Implemented value-based approach based on customers’ needs*
 • Focus modeling efforts in prioritized areas of interest
 • Small and continuous development effort that provides growing value
 • Small number of Cameo licenses for core modeling team
 • Model is accessible to whole team through HTML exports
 – *Started out small within one group, but quickly expanded to the enterprise due to the value it provides*

• Goals
 – *Identify contractual responsibilities and boundaries for different contractors*
 – *Ensure the high-level user stories can be achieved using the architecture*
 – *Help ensure the requirements generated for the RFP are complete*
Modeling Approach

- Implemented value-based approach based on customers' needs
 - **Routine engagement with government customer** identify key questions/decisions that the model can help answer
 - **Small and continuous modeling effort** that grows the model over time to provide expanding value
 - Create and update traceability along the way using established traceability patterns from warfighter CONOPS to requirements to functional capabilities
 - **Frequent iterations with SMEs**
 - Identified deficiencies (e.g. unclear responsibilities, requirements gaps, etc.) when developing model views
 - Working sessions with SMEs to resolve deficiencies
 - Validate the model and to keep the model up-to-date
 - **Updated with contractual SOWs**

- Value based approach and frequent interactions helped facilitate adoption
- Technical specifications
 - **Cameo Systems Modeler/Cameo Enterprise Architecture 19 SP4 and transitioned to 21X**
 - **Unified Architecture Framework (UAF) 1.1 and Department of Defense Architecture Framework (DoDAF) 2.0 Profile**
 - Model configuration management performed in Aerospace’s Teamwork Cloud environment
- Next, we will discuss the best practices that worked well and lessons learned we had to overcome
 - Example diagrams will be presented using publicly available models
Best Practices
Requirements Generation and Requirements Gap Analysis - Tracing

• Early goal was to make sure the concepts being developed are all reflected in the RFP SOW requirements

• To accomplish this goal,
 – Architecture built to refine the concepts and to help identify contractual boundaries
 – Then the RFP SOW requirements were generated by Subject Matter Experts (SMEs)
 – SME Requirements were imported and traced within Cameo to identify gaps:
 • Traced to architecture to identify missing functionality, performance, and interfaces
 • Traced up higher level enterprise requirements to ensure enterprise objectives are met and monitor impacts to enterprise objectives if requirements change
 • Ensure interface requirements had requirements on both contractual ends of the interface

• Traceability analysis presented in various formats (e.g. tables, matrices, and requirement diagrams) to communicate findings to different stakeholders

<table>
<thead>
<tr>
<th>ID</th>
<th>CDRL</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR_PER_WEW_01</td>
<td></td>
<td>Work through light clouds</td>
</tr>
<tr>
<td>MR_PER_RES_01</td>
<td>50</td>
<td>meter resolution</td>
</tr>
<tr>
<td>MR_PER_GEO_01</td>
<td></td>
<td>1 km geolocation accuracy</td>
</tr>
<tr>
<td>MR_PER_COV_01</td>
<td></td>
<td>Coverage of specified forest areas within the US at least twice daily.</td>
</tr>
<tr>
<td>MR_PER_INT_01</td>
<td></td>
<td>Identify an emerging forest fire within 8 hours with less than 10% false positives</td>
</tr>
</tbody>
</table>
Architecture as Communication Medium

• Initially the different groups produced their artifacts independently and using different formats. So, it was challenging to really understand contractual boundaries, interfaces, and responsibilities

• Sharing the model views improved communication across government and contractor teams
 – Cameo provide unified views combining inputs from multiple teams
 – Functional allocation, swim lanes, stereotypes, and common color schema made it clear where contractual boundaries fell

• Minimal Cameo licenses required
 – Only the core modeling team needed full licenses
 – Model exports routinely shared that do not require licenses
 • Read-only navigable model exported in HTML viewable in web browsers
 • Power Point presentations of material
 – TEMs with SMEs using Cameo over screen share
 – Model change requests are sent to the core modeling team to implement in the architecture
Achieving enterprise user stories

- MBSE Reference Architect focuses on the "what" the enterprise needs to do
 - Leveraged Operational Performers and multiple levels of abstraction of Operational Activities to define "what" the various parts of the enterprise need to do to achieve a large enterprise scenario
 - Warfighter CONOPS for different parts of the enterprise are responsible for specific operational activities
 - Sometimes, Operational Activities were decomposed into additional details to understand interactions at finer level of granularity when it was needed to refine roles and responsibilities between contracts
 - Added details on the hardware implementations by the contractors and linked to the overall architecture
 - Added details on the software development processes
Locating and Filtering Data

• Model organization was critical to help find, locate, and reuse data and avoid creating duplicative element

• Model organization approach
 – Overall structure based on enterprise and its systems
 – Leveraged common model elements library package for model elements that are reused across several systems to promote reuse
 – Within the systems leverage the Cameo UAF/DoDAF package template to group by diagram types
 – Glossary of acronyms, terms, and synonyms to facilitate communication and understanding

• Use smart package queries to easily find nested diagrams that are embedded in model elements
 – Use smart package queries to easily find model elements based on custom stereotype
Lessons Learned
Model Diagram Aesthetics

- For high level concepts, the traditional SysML/UAF/DoDAF looking diagrams that use block were not always well received by stakeholders

- To overcome this challenge, the team changed the aesthetics of the diagrams look more visually appealing while maintaining the traceability and linkages within Cameo
 - Import in a background image or process diagram outline
 - Use externally created images and icons to replace the traditional blocks on Cameo elements
 - Suppress the display of stereotypes and other properties to focus on the imported element images

- These versions were better received than traditional Cameo diagrams, but can be time consuming to create
Model Maintenance

• Requires consistent maintenance to remain relevant and keep pace with the evolving architecture
 – *Does not require high levels of STE*
 – *Slow and steady burn rate*
 – *Cannot “model once and forget”*
• Short iterations for real-time updates to the architecture
 – *Frequent interactions and engagement with SMEs to enrich focus area of the model*
Managing Model Collaboration Challenges Across Networks

• Model collaboration across disparate networks can pose challenges, but was made possible through frequent discussions and engagements between Aerospace and the government agency:
 – Model is maintained on Aerospace’s network
 – Model exports are sent to the government agency to perform model changes on their own network and then merged back into Aerospace’s network
 – Created development branches

• If the model needs to be changed on the customer network, the changes will need to be properly managed in order for the model to maintain its integrity:
 – This would require restructuring the model to federate out the portion that will be changing more regularly on the customer’s network
 – Then main model on the Aerospace network can point to the federated model
Conclusions

• The MBSE approach provided great value including:
 – Requirements Generation and Requirements Gap Analysis - Tracing
 – Architecture Model as a Communications Medium Across Government, Contractors, Bidders – Exports
 – Understanding how the enterprise achieves user stories – communicating with the warfighter
 – Locating and Filtering Data

• MBSE can be implemented successfully with steady and consistent low burn

• MBSE models can be made to be accessible and useful to all members of a project team using only a small number of licenses for Cameo

• Lessons learned provide advice on overcoming some the MBSE challenges we faced
References

• Cameo Systems Modeler – DODAF Example Model
• Cameo Systems Modeler – UAF Example Model