Autonomy & Automation in Deep Space Mission Operations

March 27, 20223

Seung H. Chung,
Planning & Execution Systems Section Manager
Launch: 2023.10.10
Target: 16 Psyche
Type: Orbiter
Arrival: 2029.08
Instruments
Multispectral Imager
Gamma Ray and Neutron Spectrometer
Magnetometer
X-band Gravity Science Investigation
Deep Space Optical Communication (DSOC)
Launch: 2024
Target: Earth
Type: Orbiter

Instruments
L-band (24-cm wavelength) Polarimetric Synthetic Aperture Radar
S-band (12-cm wavelength) Polarimetric Synthetic Aperture Radar

NISAR - NASA-ISRO Synthetic Aperature Radar
Launch: 2024.10.06
Target: Europa, Jupiter
Type: Orbiter
JOI: 2030.04.11

Instruments
Plasma Instrument for Magnetic Sounding (PIMS)
Europa Clipper Magnetometer
Mapping Imaging Spectrometer for Europa (MISE)
Europa Imaging System (EIS)
Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON)
Europa THERmal Emission Imaging System (E-THEMIS)
MAss SPectrometer for Planetary EXploration/Europa (MASPEX)
Europa Ultraviolet Spectrograph
SURface Dust Mass Analyzer (SUDA)
Mars Sample Return

Launch: 2027 – 2028
Planned
Target: Mars
Type: Orbiter, Lander, Helicopter/Rover, Launcher

Pre-Decisional Information – For Planning and Discussion Purposes Only

This document has been reviewed and determined not to contain export controlled technical data. CL#23-0979
Automation and Autonomous Around Us
With various degree of automation and autonomy

- Automatic Train Operation
- Airliner Autopilot, Autoland, Auto Takeoff?
- Autonomous Vehicle
- Autonomous Power Plant
- Autonomous Chemical Plant
- Automotive Manufacturing Automation and Robots
- Autonomous Warehouse
- …
Autonomy & Automation Technologies in the Flight System
DS1 Remote Agent Experiment

Technology
• PS - Automated Planning and Scheduling
• EXEC - Automated plan execution and monitoring
• MIR – Model-based diagnosis and reconfiguration

Mission Heritage
• DS1
ASE (Autonomous Science Experiment)

Technology
- Onboard Science – Feature detection
- CASPER – Automated planning and scheduling
- SCL – Plan execution and fault protection

Mission Heritage
- EO-1
Deep Space AutoNav (Autonomous Navigation)

Technology
• Image processing
• Orbit determination
• Maneuver planning and execution

Mission Heritage
• DS1
• Stardust
• Deep Impact / EPOXI
• ASTERIA

Mars EDL (Entry Descent and Landing)

Technology
- Guided entry
- Parachute descent
- Powered descent
- Sky Crane and Flyaway

Mission Heritage
- MSL
- M2020

https://mars.nasa.gov/mars2020/timeline/landing/entry-descent-landing/
Technology
• Lander Vision System Localization
• Safe Target Selection

Mission Heritage
M2020

TRN (Terrain Relative Navigation)

Rover AutoNav (Autonomous Navigation)

Technology
- Stereo vision
- Visual odometry
- Hazard assessment
- Path planning

Mission Heritage
- MER
- MSL
- M2020
Ingenuity Mars Helicopter

Launch: 2020.07.30
Target: Mars
Type: Helicopter
First Flight: 2021.04.19

https://mars.nasa.gov/technology/helicopter/
AEGIS (Autonomous Exploration for Gathering Increased Science)

Technology
- Target Feature detection
- Target prioritization
- Target pointing determination

Mission Heritage
- MER
- MSL
- M2020
M2020 On-Board Planner

Technology
- Automated planning and scheduling
- Automated plan executive

Mission Heritage
- M2020 (not yet deployed)

A schedule of when activities can run

Predicted energy, Predicted data volume

Flight System Automation & Autonomy – Notional

Flight System

Flight Software

Science Target & Data Management Navigation ... Subsystem Autonomy

Integrated Health & State Management Integrated Planning & Execution

Ground Data System

Mission System

Telemetry / Data
State / Health

Commands
Goals

This document has been reviewed and determined not to contain export controlled technical data. CL#23-0979
Functional vs. System-Level Automation & Autonomy
Functional vs. System-Level Automation & Autonomy

- Deep Space AutoNav
- Mars EDL (Entry Descent and Landing)
- TRN (Terrain Relative Navigation)
- Rover AutoNav
- Ingenuity Mars Helicopter
- AEGIS (Autonomous Exploration for Gathering Increased Science)

- DS1 RAX (Remote Agent Experiment)
- ASE (Autonomous Science Experiment)
- M2020 On-Board Planner
Autonomy & Automation Technologies in the Ground System
ASPEN (Automated Scheduling and Planning ENvironment)

Technology
• Automated activity planning and scheduling

Mission Heritage
• EO-1
• Rosetta

CLASP (Compressed Large-scale Activity Scheduling and Planning)

Technology
• Automated observation planning and scheduling

Mission Heritage
• NISAR
• ECOSTRESS
• EMIT
• OCO-3
Technologies:
- Stochastic plan analysis
- Activity prioritization for robust planning

Mission Heritage:
- M2020 (not yet deployed)

M2020 Copilot

Automating Deep Space Mission Operations
Reasons for Automation & Autonomy

Many argue that automation and autonomy…

- Enables missions otherwise not possible
- Reduces operations cost
Operations Cost of Deep Space Missions

Operations cost growth concerns

- **New Frontier 5 Phase E operations cost capped at $300M in FY22**
Flight and Ground Automation & Autonomy

Flight System
- Flight Software
 - Science Target & Data Management
 - Navigation
 - ... Subsystem Autonomy
 - Integrated Health & State Management
 - Integrated Planning & Execution

Ground Data System
- Integrated Health & State Management
- Integrated Planning & Execution
- ... Subsystem Autonomy
- Science Target & Data Management
- Navigation

Mission System
- Telemetry / Data
- State / Health

This document has been reviewed and determined not to contain export controlled technical data. CL#23-0979
Range of Automated Ground System

- System Under Control
- Control System
- Fully Autonomous

This document has been reviewed and determined not to contain export controlled technical data. CL#23-0979
Cost of Greater Ground Automation & Autonomy

Cost of developing and maintaining the system under control vs. Cost of developing and maintaining the control system

This document has been reviewed and determined not to contain export controlled technical data. CL#23-0979
Tradeoff between Flight/Ground Automation & Autonomy
Tradeoff between Flight/Ground Automation & Autonomy

- Latency
- Observability
- Controllability
- Reliability
- Maintainability
- Computing Capability
- Cost
- ...

This document has been reviewed and determined not to contain export controlled technical data. CL#23-0979
Challenges with Automated Operations

Sample of common concerns…

- Safety of the flight system
- Depletion of resources
- Allocation and management of HW lifetime
- Handling anomalies
- Operating degraded or faulty flight system
- Knowledge of flight system state and behavior when manual override is required
- Quality of mission outcomes
- …
Challenges with Automated Operations
Anomaly Handling / Trust / Return on Investment

Anomaly Detection and Recovery
• Operator complacency and skill atrophy
• Operator’s inability to understand and manipulate autonomous system behavior and state

Trust
• Mission success… autonomous action/inaction that may lead to mission failure
• Quality of science return given the nature of scientific “exploration” of deep space… the unknown

Return on Investment… Is it worth the trouble?
• Reusability of automation and autonomy across missions, given heterogeneous robotic spacecraft and instruments
Challenges with Automated Operations

How about *explainability*?

- Explain about an automated system…
 - How it works
 - When it works or doesn’t work
 - Why it works or doesn’t work
- Examples to consider…
 - Users’ understanding of PID controllers and Kalman filters
 - Drivers’ understand adaptive cruise control system
 - …
Success Criteria for Automated Operations
Addressing Anomaly Detection & Recovery and Return on Investment

• Standard automation and autonomy behavior
• Standard interface to flight system across missions… standardizing the telemetry and command for common flight system behavior
• Multi-mission operators and operations infrastructure
• Infrastructure to train operators and aid in retaining the skill and knowledge
Success Criteria for Automated Operations

Addressing Trust

- “Bounded” autonomy behavior for safety and risk assessment
 - Uncertainty assumption and characterization
 - Convergence or stability criteria
 - Soundness guarantees of the behavior
- Fault protection for automation and autonomy behavior... i.e. monitoring deviation from the designed boundary of autonomy behavior
- Operations experience with gradual increase in automated operations
- Scientists in the loop operations

This document has been reviewed and determined not to contain export controlled technical data. CL#23-0979
Automation and Autonomy Techniques
Generalized high-level classification of the techniques

• Procedural
• Data-driven
 • System identification
 • Feature recognition / Classification
• Model-based
 • Estimators
 • Controllers
 • Activity planning and scheduling†
 • Path/Motion planning†

† Traditionally model-based techniques have been used, but more data-driven and hybrid approaches are being adopted

This document has been reviewed and determined not to contain export controlled technical data. CL#23-0979
Challenges for Automation and Autonomy Techniques
How do we bound the automated behavior given the challenges?

- Procedural
 - Robustness
- Data-driven
 - Data availability
 - Data coverage
- Model-based
 - Model structure and complexity
 - Model creation†
 - Model verification†

† Data-driven approach commonly used
What should be next?

Continue developing automation & autonomy!

Continue developing automation & autonomy to enable missions and reduce operations cost!

But be sure to…
- Bound the behavior
- Grow from functional to system-level
- Assess overall benefits, risks, and cost