

Jet Propulsion Laboratory California Institute of Technology Physical Oceanography Distributed Active Archive Center



Earthdata in the cloud: PO.DAAC journey to the Cloud in support of SWOT

Suresh Vannan, PO.DAAC team

Jet Propulsion Laboratory, California Institute of Technology

February 27th, 2023

Ground System Architectures Workshop (GSAW)

© 2023 by Jet Propulsion Laboratory, California Institute of Technology. Published by The Aerospace Corporation with permission



<sup>© 2022</sup> California Institute of Technology. Government sponsorship



oodaac

Physical Oceanography Distributed Active Archive Center

DAACs are custodians of EOS mission data and ensure that data will be easily accessible to users.

# Total Data Volume and Data Files Distributed by Year

💻 Files 🛛 💻 Volume

76.4 PB 3.3 110 3.0 100 Distributed Data Volume (PB) Files Distributed (Billions) 2.7 90 2.4 80 **Data Archive** 2.1 Volume (2022) 70 60 1.8 50 1.5 1.2 40 30 0.9 20 0.6 10 0.3 0.0 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2011

**Fiscal Year** 



3 Billion Files

podaac

Physical Oceanography Distributed Active Archive Center



### NASA PO.DAAC : Physical Oceanography Distributed Active Archive Center

The Physical Oceanography Distributed Active Archive Center (PO.DAAC) is a NASA Earth Observing System Data and Information System (EOSDIS) data center managed by the Earth Science Data and Information System (ESDIS) Project. The PO.DAAC is operated by Jet Propulsion Laboratory (JPL) in Pasadena, California

### Mission:

The mission of the PO.DAAC is to preserve NASA's ocean and climate data and make these universally accessible and meaningful.

### **PO.DAAC in numbers:**

- 40+ years of operations
- Free and open data
- 50,000+ unique users
- > 1 PB of data
- 650+ datasets



### https://podaac.jpl.nasa.gov/



# Earth Science Data Archive Growth Projection



**Fiscal Year** 

# A New Paradigm The EOSDIS Cloud Evolution





- 6

# Benefits of the Cloud

- Easy access to data: Data users will be able to access data directly in the cloud, making the need to download volumes of data unnecessary.
- **Rapid deployment**: Users can bring their algorithms and processing software to the cloud and work directly with the data in the cloud
- Scalability: The size and use of the archive can expand easily and rapidly as needed.
- Flexibility: Mission needs can dictate options for selecting operating systems, programming languages, databases, and other criteria to enable the best use of mission data.
- **Reduced Duplication**: The use of a common infrastructure with cloud native services will reduce redundant tools and services.





Cost

- Storage
- Egress
- Development
- Computational
- Labor



Security

- Data protection
- Access control
- Cybersecurity



Migration

- Maintain existing system
- End-user
- Staffing
- Technical skill
- End-user migration



|  | Documentation v14.0.0 |  |  |  |
|--|-----------------------|--|--|--|
|--|-----------------------|--|--|--|

| Getting Started            | ~ | Introduction                                                                                                                                                                                                    | Navigating the Cumulus Docs |
|----------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Introduction               |   |                                                                                                                                                                                                                 | Get To Know Cumulus         |
| Getting Started            |   | This Cumulus project seeks to address the existing need for a "native" cloud-based data ingest, archive,<br>distribution, and management system that can be used for all future Farth Observing System Data and | Auxiliary Guides            |
| Glossary                   |   | Information System (EOSDIS) data streams via the development and implementation of Cumulus. The term                                                                                                            | Contribution                |
| Frequently Asked Questions |   | "native" implies that the system will leverage all components of a cloud infrastructure provided by the                                                                                                         | ouncidentity                |
| About Cumulus              | > | vendor for efficiency (in terms of both processing time and cost). Additionally, Cumulus will operate on<br>future data streams involving satellite missions, aircraft missions, and field campaigns.           |                             |
| Overviews                  | > | This documentation includes both guidelines, examples, and source code docs. It is accessible at                                                                                                                |                             |
| Deployment                 | > | https://nasa.github.io/cumulus.                                                                                                                                                                                 |                             |
| Configuration              | > |                                                                                                                                                                                                                 |                             |
| Development                | > | Navigating the Cumulus Docs                                                                                                                                                                                     |                             |
| Workflow Tasks             | > |                                                                                                                                                                                                                 |                             |
| Features                   | > | Get To Know Cumulus                                                                                                                                                                                             |                             |
| Troubleshooting            | > | Getting Started - here - If you are new to Cumulus we suggest that you begin with this section to help                                                                                                          |                             |
| Cumulus Development        | > | you understand and work in the environment.   General Cumulus Documentation - here <- vou're here                                                                                                               |                             |
| Integrator Guide           | > |                                                                                                                                                                                                                 |                             |
| Upgrade Notes              | > | Cumulus Reference Docs                                                                                                                                                                                          |                             |
| External Contributions     | > | Cumulus API Documentation - here     Cumulus Developer Documentation - here - READMEs throughout the main repository.     Data Cookbooks - here                                                                 |                             |
|                            |   | Auxiliary Guides                                                                                                                                                                                                |                             |

Integrator Guide - here

Operator Docs - here

#### https://nasa.github.io/cumulus/docs/cumulus-docs-readme







#### Cumulus I

per Docs Data-Cookbooks Operator Docs Q Search



Use Cases

PO.DAAC Cloud Service Requirements

Functionality: Tools & Services on the Cloud

- SWOT Survey 2.0 (n=111)
- SWOT Science Team
- SWOT Early Adopters
- PO.DAAC User Working Group
- PO.DAA SOTO use cases
- SWOT Hydrology wishlist
- Application Journeys (n=65)

- Application data requirements and user capabilities
- User workflows (use case traceability matrix)

- Prioritized use cases based on % users impacted
- Use cases can be looked at by User Persona (e.g. oceans, hydrology, or coastal applications)
- Use cases complemented by user data preferences (e.g. data file format, projections, software & tools)

E. N. Stavros, C. M. Oaida, J. Hausman and M. M. Gierach, "A Quantitative Framework to Inform Cloud Data System Architecture and Services Requirements Based on User Needs and Expected Demand," in *IEEE Access*, vol. 8, pp. 138088-138101, 2020, doi: 10.1109/ACCESS.2020.3012054.



### **Data Migration Timeline**

| Jet Propulsion Laboratory<br>California Institute of Technology | Physical Ocea | nography Distributed | d Active Archive Cent                                                                                                                  | er               |                |              |                      |                    |                   |                     | Follow Us             |  |
|-----------------------------------------------------------------|---------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|--------------|----------------------|--------------------|-------------------|---------------------|-----------------------|--|
|                                                                 | HOME          | FIND DATA            | ACCESS DATA                                                                                                                            | RESOURCES        | ABOUT          | HELP         | CLOUD DATA           |                    | 🔻 Data            | Search              |                       |  |
| Home                                                            |               |                      |                                                                                                                                        |                  |                |              |                      |                    |                   |                     |                       |  |
| CLOUD DA                                                        | ATA - MIG     | GRATIO               | N                                                                                                                                      |                  |                |              |                      |                    |                   |                     |                       |  |
| CLOUD DATASETS                                                  |               | During 2             |                                                                                                                                        | in the process o | f migrating it | ts data arch | ive to the Farthdata | Cloud bosted in Ar | mazon Web Service | s (AWS) During this | s transition some dat |  |
| ABOUT                                                           |               | will cont            | will continue to be available from the on premise archive, while some data will also be available from and within the Earthdata Cloud. |                  |                |              |                      |                    |                   |                     |                       |  |
| ACCESS DATA                                                     |               | Timel                | ine                                                                                                                                    |                  |                |              |                      |                    |                   |                     |                       |  |
| FAQ                                                             |               | · · · · · ·          |                                                                                                                                        |                  |                |              |                      |                    |                   |                     |                       |  |

| MIGRATION                   | Phase 1 (Cloud Accessable Date: April 15, 2021; Cloud Only Access Date: January 31, 2022)     | ۵ |
|-----------------------------|-----------------------------------------------------------------------------------------------|---|
| Timeline                    | Phase 2 (Cloud Accessable Date: October 1, 2021; Cloud Only Access Date: May 2, 2022)         | ٩ |
| What to Expect              | Phase 3 (Cloud Accessable Date: December 23, 2021; Cloud Only Access Date: November 14, 2022) | ۵ |
| Tutorials<br>Migration FAQs | Phase 4 (Cloud Accessable Date: April, 2022; Cloud Only Access Date: November 14, 2022)       | ۵ |
|                             | Phase 5 (Cloud Accessable Date: July, 2022; Cloud Only Access Date: March 31, 2023)           | ٩ |



ma fra

RESOURCES

### **Data Migration**



Home » Dataset Discovery

oodaac

Physical Oceanography Distributed Active Archive Center

RSS SMAP Level 3 Sea Surface Salinity Standard Mapped Image 8-Day Running Mean V4.0 Validated Dataset

(SMAP\_RSS\_L3\_SSS\_SMI\_8DAY-RUNNINGMEAN\_V4)

9 6 Publications Cited this Dataset Citation metrics available for years (2014-2021)

| Information     | Coverage                                              | E Data Access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Documentation |  | Constant Version History |  |  |  |
|-----------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--------------------------|--|--|--|
|                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |  |                          |  |  |  |
| Version         | 4.0                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |  |                          |  |  |  |
| Processing Leve | <b>el</b> 3                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |  |                          |  |  |  |
| Start/Stop Date | <b>e</b> 2015-                                        | 2015-Mar-27 to Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |  |                          |  |  |  |
| Short Name      | SMAP                                                  | SMAP_RSS_L3_SSS_SMI_8DAY-RUNNINGMEAN_V4                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |  |                          |  |  |  |
| Description     | The v<br>on the<br>data f<br>opera<br>includ<br>based | The version 4.0 SMAP-SSS level 3, 8-Day running mean gridded product is based<br>on the fourth release of the validated standard mapped sea surface salinity (SSS)<br>data from the NASA Soil Moisture Active Passive (SMAP) observatory, produced<br>operationally by Remote Sensing Systems (RSS). Enhancements with this release<br>include: use of an improved 0.125 degree land correction table with land emission<br>based on SMAP TB; replacement of the previous NCEP sea-ice mask with one |               |  |                          |  |  |  |

#### SHARE THIS PAGE <



CLOUD ENABLED

#### Status: ACTIVE

#### Short Name:

SMAP\_RSS\_L3\_SSS\_SMI\_8DAY-RUNNINGMEAN\_V4

#### **Collection Concept ID:**

C1940468263-POCLOUD

#### **Spatial Coverage:**

| N: | 90°  | S: | -90°  |
|----|------|----|-------|
| E: | 180° | W: | -180° |

Access:

### **Data Services Migration Timeline**



# **End User Migration**



arn / Webinars and Tutorials / Cloud Primer for Amazon Web Services

#### Data Topics Learn Engage About Q

#### **Cloud Primer for Amazon Web Services**

AWS Cloud Primer tutorial page for Earthdata Cloud.

This primer provides step-by-step tutorials on how to get started in the AWS cloud. The tutorials are listed in the recommended reading order. However, feel free to read them in an order that coincides with your background and preference. Given that cloud technology is constantly evolving, it is likely that some primer details no longer match reality when you try to use it. If you find mismatches (e.g. broken third-party links), contact us so that we can feed them into the next release of the primer.



Click on a tutorial to download the PDF:

01 — Why Use the Cloud? (PDF)

sical Oceanography Distributed Active Archive Center

- 02 Understanding and Managing Costs in the AWS Cloud (PDF)
- 03 Create a Basic Elastic Cloud Computer (EC2) Instance (PDF)
- 04 Connect to an AWS EC2 Instance Windows and PuTTY (PDF)
- 05 Connect to an AWS EC2 Instance Mac OS X (PDF)
- 06 Create Cloud Storage Using AWS Single Storage Service (S3) Buckets (PDF)
- 07 Access AWS-hosted S3 Earthdata (PDE)

Technologies Amazon Web Service (AWS)

Supercomputing

Featured Discover Open Science Resources https://www.earthdata.nasa. gov/learn/webinars-andtutorials/cloud-primeramazon-web-services



## □ Leveraged Space Act Agreement



Cost

□ Negotiated contract with AWS for lowered cost

□ Invested in building cost models

- Past trends
- Expected usage

Built buffer in cost

Support from organization





### Earthdata uses NGAP

- □ NGAP Next Generation Application Platform
  - I NGAP is the NASA Compliant General Application Platform. It provides a cloud-based Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS) for EOSDIS applications.

Security

- Implemented security training across teams
- Incorporated security as an integral part of the DevOPS process (synck tools)





□ Utilized SAFe agile development model

Encountered delays and unexpected challenges
 Build margins

Migration

□ Long tail issues take longer effort and resources

□ Communication was very critical



## **Measuring Success**



- Since July of 2022, PO.DAAC delivered data to more EarthData Cloud users than PO.DAAC Drive Users
- Data Distribution and user adoption are trending in a positive direction

## We are not at the destination yet....







Enable new Frontiers in Science



Open Data Open Source Science Equitable access to data

