

This document has been reviewed and determined not to contain export controlled technical data.

Ground Systems Architecture Workshop 2024

Mars 2020 Mission and its Ground System

Presented by Guy Pyrzak, Mars 2020 Mission Lead

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

Jet Propulsion Laboratory California Institute of Technology

© 2024 California Institute of Technology. Government sponsorship acknowledged.

Mars Global Climate Change

Modern Mars

Mars ~ 3.6 billion years ago (?)

Terrestrial Biological Time Line

What Should We Look For?

Classic Fossils: Less than ~ 650 million years old VS

Microbial and/or chemical biosignatures: up to 3.6 billion years old

To understand the possibilities for life on Mars, we seek to fulfill four ambitious goals

UNDERSTANDING THE POSSIBILITIES FOR LIFE ON MARS

Why Sample Return?

Rover instruments can only do so much

Analyses on Earth are much more advanced

*Required for detection of life/biomarkers, age of rock, etc. Samples remain available for future generations, as technology advances

Context is everything

We get to pick where the samples are collected!

The Rover

Lots of cameras!

The Ground Data System

MARS YEARS:

10.6 km

samples collected: 2 scooped 6 drilled samples

MARS YEARS:

1.25

15 km

samples to collect: 20 drilled samples

Mission System Principals

reduce ground in the loop cycles

PRINCIPLE 01

Automate select rover behaviors to allow the rover to make it's own decisions.

make plans easy to build

PRINCIPLE 05:

Ensure activities that are regularly conducted with the vehicle are easy for operations team to implement.

do more science

PRINCIPLE 04. Increase the time that the vehicle is actively pursuing science on Mars.

remove restricted sols

PRINCIPLE 02. Eliminate restricted sols through a shorter tactical timeline.

be fast, be flexible

PRINCIPLE 03: Perform functions (flight and ground) more quickly.

Challenges

- Monolith Applications
 - •MSLICE and MPCS
- •The Rise of Analytics and COTS tools
- Search in so many places
- Significant Evolutions in team tools and html and cloud technologies
- Previous GDS releases took months due to deployment challenges
- Increasing Cybersecurity requirements from NASA and the world

Access External Services Through Internet

				Search	
ACA Viewer	AD Editor APSS	ASTTRO RPS	CACHER CS3	CACHER API	CAMP IDS
ACA Viewer	AD Editor	ASTTRO	CACHER	CACHER API	CAMP
	ξĵ	දිටු			
	CREDSS CLI	CSSO (API Endpoint)	Channel Viewer	Comm Tracker	Cross Check
COCPIT	CREDSS CLI	CSSO Endpoint	Channel Viewer	Comm Tracker	Cross Check

Operations

Entry, Descent and Landing (aka 7 minutes of terror)

NASA/JPL-Caltech

Perseverance has also delivered *Ingenuity*, a small helicopter, to the surface

NASA/JPL-Caltech/MSSS

This technology demonstration is the first powered flight on another planet!

Mastcam-Z image of Ingenuity. NASA/JPL-Caltech/ASU

NASA/JPL-Caltech/Doug Ellison

From first images...

Mastcam-Z first 360° panorama, from Sol 3. NASA/JPL-Caltech/ASU/MSSS

...to firsts

Mars 2020: By the numbers*

Perseverance:

- Over 578,000 images taken
- 25.8 km traversed
 - Longest autonomous single-day drive by any rover (320 m)
- 26 sample tubes processed
 - First ever samples acquired for return to Earth

Ingenuity:

- 72 flights completed
 - First ever powered flight on another planet
- 17 km flown; over 128.8 minutes total flying time

NASA/JPL-Caltech. Artist's impression of Jezero Crater ~3.8 billion years ago.

Where we are now

Perseverance odometry: 23.2 km Ingenuity: 67 flights, 15.3 km

Perseverance Path

Séítah

Ingenuity Flight Paths

Octavia E. Butler (OEB) Landing Site

From https://mars.nasa.gov/mars2020/mission/where-is-the-rover/ NASA/JPL-Caltech

Belva

Image taken from the Return to Earth (RTE) camera on Ingenuity during Flight #3. (NASA/JPL-Caltech)

Panorama of the Van Zyl Overlook, from sols 53-64. NASA/JPL-Caltech/ASU/MSSS

MRO_M20_2021_274_03-32191

⊘ Succeeded

Crater Floor Geology

Séítah fm.

(Cf-f-1)

Octavia E. Butler / Landing Site

Máaz fm.

(Cf-fr)

Member Description **Type Example** Ch'ał Massive, blocky, Ch-al (sol 78) (Máaz fm) "hummocky" rocks found predominantly east of OEB Baa_big_han (sol 66) Polygonal, low-Nataani (Máaz fm) lying, granularweathering "pavers" to the south of OEB Variably massive Rochette (Máaz fm) to layered to pitted resistant cap rocks along Artuby ridge Rochette (sol 197) Artuby Granular-(Máaz fm) weathering, layered outcrops observed at Artuby, Vaucluse Mure and (sol 177) Artuby Roubion Polygonal, low-Roubion (sol 163) (Máaz fm) lying, granularweathering "pavers" in lower elevation Máaz fm Content (sol 239) Content Pitted rocks at (Séítah fm) top of Martre outcrop Bastide Layered rocks Bastide (sol 209) (Séítah fm) comprising middle-lower

part of Martre

outcrop

Máaz formation

Séítah formation

Máaz fm. (Cf-fr)

After Simon et al. (2022), LPSC

Front HazCam image of sampling the Ch-al member (*Hahonih*) NASA/JPL-Caltech

Perseverance carries

- 38 identical sample tubes
 for rock, regolith, atmosphere
- 5 witness tubes
 for contamination knowledge

Of these, 26 tubes have been used so far, including 20 rock samples, 2 regolith samples, 1 atmospheric sample, and 3 witness tubes

🗧 🖅 COCPIT - Sol 15 Demo					Observer	~	0	60	Δ	:	Activity		×
Focus Subsystem 🗸 – = =	* Q.⊕	09:00 SOL 15	10:00	11:00	12:00	13:00		14:00	15:00				
Sol 15 HGA Window	۵ 🕨	Sol 1									Cleanup		الله
Thermal Management	•3 F										Start Time	Sol 15 10:18:29	¢∳:
Handover Sol 15	¢										End Time	Sol 15 10:19:22	
Engineering Keepout	♠3 ▼		L								Duration	55	
Placeholder	de la		L								Science Intent		•
Margin & Cleanup	▲3 ▼		2								Campaign		
Margin	der.												
Cleanup	de la										Goal		
Sol 15 MEDA	•			Sol 15							Task		
MEDA Activate	▲3 ▼			MEDA 1									
Placeholder	s			Placehol							CLEAR		
Margin & Cleanup	♠᠑ ▼												
Margin	de .										Resource Effects		•
Cleanup	de la										Energy		
Sol 15 PIXL				Sol 15							Total Energy	Whrs	
PIXL Test	•2 Þ			PIXL 1							Data Effects		
Margin & Cleanup	♠3 ▼										https://mail01.nd	c.nasa.gov/owa/	
Margin	der .												
Cleanup	der.										Parameters		•
Sol 15 Drive and Image					Sol 15 Drive an	nd Image					Show Expert Parameters		
ZCAM Before Drive	▲3 ▼										Seq_ID		
Placeholder	Ser.										Override_Duration	0	

Panorama of first coring attempt location, from sol 155. NASA/JPL-Caltech/ASU/MSSS

Sample #1: target "Roubion"

CacheCam image NASA/JPL-Caltech

Front HazCam image from Aug 6, 2021 NASA/JPL-Caltech

Sample Collection Map: Tubes 1-21

Sample #2: target "Rochette"

Sample "Montdenier" in the tube!

Sample #3: target "Rochette"

Sample "Montagnac" in the tube!

NASA/JPL-Caltech

After Hickman-Lewis et al. (2022), LPSC

SuperCam RMI

Mosaic of three ACI images each centered over a different detail scan area within Garde

lcm

Abundant olivine grains visible in the SuperCam RMIs of relatively fresh surfaces on most Séítah outcrops.

After Hickman-Lewis et al. (2022), LPSC

Interlocking crystalline texture with rich mineralogical heterogeneity observed in abraded patches.

Sample #4: target "Brac"

Sample "Salette" in the tube!

Máaz samples:

Igneous; lava flows with evidence for alteration by water

Séítah samples:

Igneous; with evidence for alteration by water

F. Calef/NASA/JPL-Caltech

Sample Collection Map: Tubes 1-21

Delta Front Campaign

Lower Rockytop

Hogwallow Flats

Betty's Rock

Skinner Ridge

Wildcat Ridge

Mastcam-Z panorama of Hogwallow Flats. NASA/JPL-Caltech/ASU/MSSS

Mastcam-Z images of Rocky Top and Skinner Ridge. NASA/JPL-Caltech/ASU/MSSS

WATSON image of Thornton Gap abrasion. NASA/JPL-Caltech

Skinner Ridge: Fine/medium-grained, poorly-sorted sandstone

Wildcat Ridge: sulfate-rich mudstone

Mastcam-Z image of Wildcat Ridge, with Berry Hollow abrasion and the core hole from the Hazeltop sample. NASA/JPL-Caltech/ASU/MSSS

Samples: *Hazeltop, Bearwallow*

5 mm

Berry Hollow 7 cm

WATSON image of Berry Hollow abrasion. NASA/JPL-Caltech

Delta Front Campaign

River Deltas Are Habitable Environments

Alaska runoff, NOAA

Backup depot construction

The Three Forks Sample Depot

Bearwallow Coulettes Roubion Mageik Malay

Montdenier Crosswind Lake

The Three Forks Sample Depo

Amalik WT

After dropping tube #9. NASA/JPL-Caltech/MSSS

NASA/JPL-Caltech

Malay

B ARE Western Fan Campaign Samples

*Only those on board Perseverance, not including crater floor samples

B ARE Margin Campaign Samples

		A REAL PROPERTY AND A REAL OF	Contraction of the second second second						
	SAMPLES COLLECTED TO DATE								
Carl Star	Perseverance	Three Forks	<u>Description</u>						
States of the		Roubion	Atmosphere						
	Montagnac	Montdenier	Igneous						
	Salette	Coulettes	Igneous						
	Robine	Malay	Igneous						
	Hahonih	Atsah	Igneous						
	Swift Run	Skyland	Sedimentar						
	Hazeltop	Bearwallow	Sedimentar						
	Shuyak	Mageik	Sedimentar						
	Kukaklek		Sedimentar						
	Atmo Mountain	Crosswind Lake	Regolith						
	Melyn		Sedimentar						
	Otis Peak		Sedimentar						
	Pilot Mountain		Sedimentar						
	Pelican Point		Sedimentar						
	Lefroy Bay		Sedimentar						

26 tubes have been filled (including 3 witness tubes)

17 tubes remain (incl 2 witness

10 tubes were cached at Three Forks Depot (incl witness)

16 sealed tubes are now stored on Perseverance (incl 2 witness)

TURQUOISE BAY

BILLS BAY LEFROY BAY

ABRADE SOL935 CORE26 SOL942

HANS AMUNDSEN MEMORIAL WORKSPACE

ABRADE SOL915 CORE25 SOL923

AMHERST

PELICAN

METERS

Where we are going

RETVA VALLIS

scent route

Margin Unit

Belva

Perseverance Path

Séítah

Ingenuity Flight Paths

Octavia E. Butler (OEB) Landing Site

From https://mars.nasa.gov/mars2020/mission/where-is-the-rover/ NASA/JPL-Caltech

Crater rim...and beyond

200m 500m 10

Thank you

Presentation Heritage

This presentation is a consolidation of already released JPL material. URS: URS307639, CL#22-1092 URS: URS306829, CL#22-1902 URS: URS315549, CL#23-2729