
© The Aerospace Corporation, 2024

Ground and Space Development, 
Security, and Operations for 

Reconfigurable Edge Platforms
Shariar Alamgir, Elisabeth Nguyen, 

Dhruv Bohra
The Aerospace Corporation

February 27, 2024

Approved for public release. OTR 2024-00326.



1

Transitioning Toward Dynamic & Distributed Space Cloud Architectures
Then vs Now

Ground systems are heavily responsible for providing reconfigurability for complex 
compute 

• Satellites today
– Are programmed by a selected contractor
– Can only rely on themselves
– Require squads of ground operators for safe flight
– Can only be used by a few people
– Need to be told exactly what to do all the time
– Largely single-purpose after launch

• Future satellites need to
– Be programmable by anyone
– Cooperate with other satellites
– Operate with less reliance on humans
– Receive the tasks best for them to execute
– Autonomously determine how to fulfill requests
– Take over for satellites suddenly out of commission

GPU
AI Models 
& Kernels

FPGA
IP Blocks / 
Bitstreams

Storage
Commands 
and Data

Sensors
Effects & 
Collection

CPU
Containers

Kubernetes



2

Future Dynamic & Distributed Space Cloud Architecture

FPGA
IP Blocks / 
Bitstreams

Storage
Commands 
and Data

Sensors
Effects & 
Collection

CPU
Containers

GPU
AI Models 
& Kernels

Storage
Commands 
and Data

Sensors
Effects & 
Collection

CPU
Containers

GPU
AI Models 
& Kernels

Storage
Commands 
and Data

FPGA
IP Blocks / 
Bitstreams

New ground challenges
• Securely create and validate the interfaces between modules targeting various compute elements
• Leverage autonomous pipelines to accelerate FSW V&V from years to days
• Commit support to legacy and future combinations of complex mission payload configurations

Swap Containers

Swap AI Models



3

Example Scenario
Enabling Technology: Heterogeneous Compute

Future DevSecOps tooling will require pipeline standardization for compute elements apart from CPU containers

1. Overutilized satellite contains multiple compute types
• Field-Programmable Gate Array with partial bitstream reconfiguration
• GPU or AI accelerator capable of model segmentation / paravirtualization
• General Purpose CPU with runtime replacement support

2. Incoming task requires new app, with all new onboard modules
1. New FPGA blocks: updated sensor interfacing algorithm
2. New GPU kernel: updated mission data preprocessor
3. New CPU container: updated downlink target and SDR control

3. Requires an agile DevSecOps pipeline that
• can quickly develop safe modules for all compute types
• handle packaging of payload
• verify operation in space-like environment

GPU AI Accel.Interfaces

CPU FPGA

Memory Storage

Satellite Mission Payload

con1 con2 blk1 blk2

Processor System

etc…

Programmable Logic



4

DevSecOps Sequence of Events

Developer
• Develop source code
• Generate Security reports
• Test in Operational dev sandbox

Integrator
• Develop interface control document 
(ICD) and infrastructure SW

• Secure interfaces and verify reports
• Operational end-to-end tests

Schedule & 
Binary Uploads

Interface Docs, 
Security Reports, 

and Binaries

Reference Architecture Overview

Each phase of the DevSecOps pipeline will be affected by the need to support space clouds



Developer Pipeline



6

Reference Architecture
Developer Pipeline

D
E

• Code autogeneration
“guarantees” functionality 
matches API documentation

• Expressive models can be reused 
in anomaly resolution process



7

Reference Architecture
Developer Pipeline

C
PU

• Polygot microservices-
based FSW architecture 

• Strict functional & security 
testing requirements



8

Reference Architecture
Developer Pipeline

FP
G

A

• Templatized hardware 
designs from integrator / ICD

• Cross-vendor and algorithm 
porting requirements (HLS)



9

Reference Architecture
Developer Pipeline

AI

• Trusted AI testing against 
rogue training, adversarial 
stimulus, etc.

• “Live” retraining and 
deployment of networks



Integrator Pipeline



11

Dev

Reference Architecture
Integration Pipeline

• Integrator-provided ICD speeds 
up SDK creation

• Standard API calls and OSAs 
accelerate pen testing and SW 
reuse across platforms



12

Sec

Reference Architecture
Integration Pipeline

• API fuzzing provided by platform 
owner, as “do-no-harm” tests

• Integrator signing and certifying 
validity of artifact security test reports



13

Ops

Reference Architecture
Integration Pipeline

• Increased use of virtualized flatsat
environments for rapid and accessible 
integrator functional testing



14

Conclusion

• Driven by increasingly dynamic user requests, modular reconfigurability will drive the adoption of app-
based open systems architectures

• The Aerospace Corporation predicts many novel challenges for future ground systems in their support to 
highly reconfigurable “space cloud” satellites
– Horizontal and vertical testing across virtualized complex mission compute payloads
– FSW development cycles accelerated by multiple orders of magnitude
– Sharp divide between developer and integrator roles
– Memory security and isolation configurations on-asset to enforce zero-trust requirements



Backup



16

Onboard DevSecOps
Expanding the Pipeline to Space

• Container-based uploads can be too large 
for mission uplink.

• Adversarial compromise of ground system 
introduces new attack vector.

• Multiple payloads from various sources 
need to coexist securely.
– Need for isolation between different 

classification levels (Top Secret, Secret, 
Unclassified, etc.)

• Aerospace has tested implementing the 
Security and Operational stages on space 
vehicles.
– Pre-deployment security scanning
– Building, storing, and deploying 

containers onboard space vehicle
– Logical isolation tools during payload 

execution. 
Current architectures perform all DevSecOps in ground 
before deployment. With the recognizition of threats in 
all stages, our proposed architecture improves both 
ground and onboard DevSecOps speed and security



17

Onboard DevSecOps
Secure, Isolated Payload Execution in Space

Vulnerability scan tools paired with strong logical isolation tools provide secure payload development and 
concurrent execution on-board space vehicles.

• Containerized applications provide some isolation, but have 
existing flaws:
– Enabling memory sharing removes some isolation.
– Attacks on containers still exist.

• Experimental study on security scanning tools
– Source-code scan tools for C, C++, and Python pre-compilation 

(Artifact Scan)
– Container image scan tools for post-compilation (Image Scan)

• Trade study on common security isolation tools
– Linux Security Module (LSM); fine-grained access control
– Trusted Execution Environment (TEE); strong hardware-enforced 

logical isolation through offering like ARM TrustZone

Onboard

Artifact Scan

Image Scan

Image Build Registry

Deployment

Anywhere
“Trusted” Source



18

Aerospace’s Dynamic & Distributed Space Cloud Architecture
Then vs Now

Pushing forward the Nation’s compute in space by launching flying datacenters 

• Satellites today
– Are programmed by a selected contractor
– Can only rely on themselves
– Require squads of ground operators for safe flight
– Can only be used by a few people
– Need to be told exactly what to do all the time
– Largely single-purpose after launch

• Future satellites need to
– Be programmable by anyone
– Cooperate with other satellites
– Operate with less reliance on humans
– Receive the tasks best for them to execute
– Autonomously determine how to fulfill requests
– Take over for satellites suddenly out of commission

GPU
AI Models 
& Kernels

FPGA
IP Blocks / 
Bitstreams

Storage
Commands 
and Data

Sensors
Effects & 
Collection

CPU
Containers

Kubernetes



19

Current Static & Stovepiped Satellite Architecture

• Satellites today are
– Largely single-purpose after launch
– Programmed by a single selected contractor
– Reliant on only themselves
– Explicitly commanded by many humans
– Comprised of simple homogeneous compute

FPGA
IP Blocks / 
Bitstreams

Sensors
Effects & 
Collection

FPGA
IP Blocks / 
Bitstreams

Sensors
Effects & 
Collection

FPGA
IP Blocks / 
Bitstreams

Sensors
Effects & 
Collection



20

GPU
AI Models 
& Kernels

FPGA
IP Blocks / 
Bitstreams

Storage
Commands 
and Data

Sensors
Effects & 
Collection

CPU
Containers

Future Dynamic & Distributed Space Cloud Architecture

GPU
AI Models 
& Kernels

FPGA
IP Blocks / 
Bitstreams

Storage
Commands 
and Data

Sensors
Effects & 
Collection

CPU
Containers

• Satellites today are
– Largely single-purpose after launch
– Programmed by a single selected contractor
– Reliant on only themselves
– Explicitly commanded by many humans
– Comprised of simple homogeneous compute

• Future satellites need to
– Execute on new tasking post-launch
– Be programmable by anyone
– Cooperate with other satellites, in part for resilience
– Utilize higher abstraction & autonomous commanding
– Utilize complex heterogeneous processors

GPU
AI Models 
& Kernels

FPGA
IP Blocks / 
Bitstreams

Storage
Commands 
and Data

Sensors
Effects & 
Collection

CPU
Containers



21

Motivating Scenario
Then vs Now

Mission-critical reconfigurations must be possible rapidly and welcome module swapping between ground and 
space platforms

• Reconfigurable Compute Scenario
– A Satellite contains multiple compute types (Field-Programmable Gate Array (FPGA) blocks, GPU AI/ML Networks, CPU containers) 

and is running at 100%
– New high priority task needs to be scheduled, requiring new compute type modules

• New FPGA for specific mission critical fast processing using custom hardware design close to sensors
• New GPU models to preprocess mission specific data translation to create more usable data reports
• New CPU container requiring downlink software change to send data.

– Requires an agile DevSecOps pipeline that can quickly develop safe modules for all compute types, handle packaging of payload, and 
verify operation in space-like environment.



22

Nebula {X}
Research portfolio to de-risk rapid in-ops capability insertion and autonomy

Reconfiguration moves us from continuous production agility to continuous operation agility

• Nebula {X}: collection of projects to address the technology gap multiple 
customers are rapidly approaching
– Current focus on reconfiguration via containers and re-use of commercial 

enterprise container orchestration software tools

• Research goals
– Maximize autonomy and resiliency of space processing
– Blur the lines between “space” and “ground” capabilities
– Minimize latency between tips and cues
– Increase collaborative capabilities of intra- and inter-constellation efforts
– Prepare customers for tracking and tasking increasingly larger counts of vehicles
– Reduce reliance on human intervention

• Work ongoing since FY19; significant ramp-up in FY23
• For more technical detail on each project, see the Nebula {X} Confluence

D
es

ig
n

En
gi

ne
er

in
g

M
is

si
on

https://aerosource2.aero.org/confluence/pages/viewpage.action?pageId=435224827


23

Levels of Compute Reconfigurability

Every advanced technological capability for future architectures will require Level 3 orchestration as a foundation

Level 1

Predefined modes – status quo for on-board computing
• Software for each processor delivered as a single, integrated baseline
• Any software changes are thoroughly regression tested to establish a new static baseline
• Software modes predefined to reflect major vehicle behaviors

Level 2
Module Replacement – flexible to modular code changes
• Capitalizes on containerization capabilities
• Requires loosely coupled software architectures

Level 3
On-board Orchestration – infrastructure layer of autonomy
• Responds to stimuli (e.g., tip and cue, fault management) using commercial solutions
• Supports load balancing and automated failover – enables using less reliable hardware and/or fewer spares

Reliable, but slow to 
change

Current Operational 
State of 

Autonomous 
Systems Research

Capability Gap for
Future Need



24

Kernels

IP Blocks Sensors

Containers

Kernels

IP Blocks Sensors

Containers

Kernels

IP Blocks Sensors

Containers

Kernels

IP Blocks Sensors

Containers

Ground 
Station

Reconfigurable Compute Diagram: Module Swapping



25

Background
Enabling Technology: Heterogeneous Compute

Future DevSecOps tooling will require pipeline standardization for compute elements apart from CPU containers

CPU FPGA

AI Accel.InterfacesGPU

Memory Storage

Satellite Mission Payload

con1 con2 blk1 blk2

Processor System / Programmable Logic

• CPU, FPGA, and other ASIC HW devices are often integrated as 
part of a single payload

– A System on Chip (SoC) integrates these die into a single package
– These COTS parts are highly SWaP-C2 optimized

• Containers themselves only run on CPUs, as only CPUs can 
support a general purpose kernel / host OS

– The container running on a CPU may both configure and exchange 
data with other components on an SoC

• Independently reconfigurable modules are also possible within 
FPGA fabric (like containers but in FPGA fabric)

– Xilinx Dynamic Function eXchange
– Ettus RF Network on Chip

etc…



26

Reference Architecture
Development Pipeline

Low-classification application development and testing – isolated

Dev
Develop app source code from SDK and compile into executable binary

1. Template-based design to support short-iteration “Agile” development
2. Emphasis on reuse of existing software architecture and compiled artifacts
3. Model-Based Software Engineering (MBSE) techniques and Linters

Sec
Secure source code and generate outgoing reports

1. Static Application Security Testing (SAST): OWASP & MITRE CVE/CWE scanning
2. Wide code coverage of different types
3. Manual architecture security review for fault isolation and error propagation

Ops
Test on mock pseudo-Operational environment using given API calls

1. Base HW interface testing
2. Cloud sandbox deployment
3. Performance testing in clean environments



27

CPU Containers

• Host and develop mission app source code
– Quickly swap out mission-critical application to meet new high-priority task and run on general-purpose CPU
– Quality testing code with unit tests that meet code coverage.

• Pre and Post Compilation security and vulnerability analysis
– Ensure new application is safe for satellite deployment.
– Source code and object scanning to detect vulnerabilities.

• Functional testing before packaging into deployable image ready for integration.
– Sandbox testing of mission environment to ensure application performs task for specific end-user.
– Ensure container internal sources can interface with container.



28

FPGA Bitstream

• Develop design specific FPGA bitstreams for changing hardware requirements in different mission specific 
tasks.

• Promote agile development for ground systems
– Provide developer pipeline with templatized FPGA designs that have been tested and verified for integrator pipeline 

and operational environment
– Speed up development process with templates.

• Hardware Design Language (HDL) security scanning pre-compilation to ensure bitstreams do not have 
known vulnerabilities

• Post-compilation verification to ensure bitstream generation does not contain vulnerabilities or was 
maliciously altered.

• Simulation testing of hardware design to validate performance and ensure functional operation.



29

GPU AI/ML Networks

• AI Networks that take trained models and mission specific data with untrained models to aid in 
preprocessing data
– Can speed up and improve mission specific data translation by preprocessing data through AI Model using GPU.

• GPU is often neglected as compute type for space payload
– Developer pipeline can take pre-trained models to optimize operations once deployed



30

Reference Architecture
Integration Pipeline

High-classification infrastructure integration efforts – context aware

Dev
Develop app wrapper and infrastructure SW, if necessary

1. SDK and API definition
2. Infrastructure application development
3. Penetration testing and red-teaming

Sec
Secure interfaces between apps and hardware, and verify reports

1. Static, Dynamic & Feedback-based Application Security Testing (SAST/DAST/FAST) and API Fuzzing
2. Least privilege execution during runtime
3. Memory, Storage, and Inter-Process-Communication (IPC) interface verification

Ops
End-to-end tests on representative Operational environment and commit

1. Input mission data generator to system
2. Output analysis data verifier from system
3. Low-latency delivery system to mission management center 



31

Integrator Pipeline Development Stage

Develop app wrapper and infrastructure SW, if necessary

• API consistency verification to ensure incoming artifacts 
adhere to specifications and meets end-product 
specifications.

• Ensure that payloads coming from various sources to a 
single target match API requirements and contain 
development features for specific 
– Mission application in Docker images verified against docker 

registry, ensuring base layers are up-to-date and meet 
specifications

– FPGA bitstream artifacts checked against integrator-hosted 
registry.

– GPU/AI code and models verified to ensure input/output 
formats are compatible with infrastructure and GPU-specific 
functionalities behave consistently



32

Integrator Pipeline Security Stage

Secure interfaces between apps and hardware, and verify reports

• Ensure incoming compute type artifacts adhere to proper security and 
have been adequately tested for vulnerabilities and potential errors
– API fuzz testing with invalid, malicious, or error-inducing inputs to 

determine potential vulnerabilities.
– Fuzz testing to determine how API handles security protocols.

• SAST/DAST used on container, FPGA, and GPU accelerator artifacts 
from developer pipeline. 
– Dynamic environments to run and check for vulnerabilities of mission-

critical applications in Docker containers
– Hardware emulators of mission systems to test incoming FPGA bitstreams
– GPU application that processes sensitive data use DAST tools to 

determine how application performs under different workloads and 
detecting runtime vulnerabilities

– FAST absorbs results from SAST/DAST on all tools to improve security for 
future artifacts

• While relying less on users, security stage still uses manual review 
for result verification



33

Integrator Pipeline Operational Stage

End-to-end tests on representative Operational environment and commit

• Preparing the payload for integration to the operational 
environment with integrator pipeline testing

• Horizontal testing
– Testing each artifact individually for functional accuracy and 

seamless integration of new artifacts.
– CPU Containers tested against each other <add more info>
– FPGA blocks tested against each other, verifying input-output 

behavior, data paths, and interfaces to achieve expected 
outputs.

– GPU <add more info>
• Vertical testing

– Operational testbed environment used to test compute type 
functionality with each other.

– Mission-specific CPU application, hardware FPGA design, 
and GPU AI/ML models ran on satellite-representative 
testbed

– Ensure all compute types properly operate before deploying 
as payload. 



34

Security Scan Tools

Onboard security scanning trade study using spacecraft-friendly tools

• Determine which security tools would be appropriate to run on a spacecraft.
– Build data scan tools used to scan C, C++, and Python source code being built into container images
– Image scan tools used to scan vulnerabilities on built images

• Many security tools are available for developers, however some of them are computationally expensive, have high 
overhead, or require to be constantly connected online for updates or database requests.
– Finding tools that satisfied our requirements: running on an ARM64 embedded device, avoiding frequent updates, performing 

well offline.

Build Data Scan Tools
• PyCQA Bandit – Python Scanner
• Wheeler Flawfinder – C/C++ Scanner
• ZupIT Horusec – Multi-language tool

• Single-language tools were significantly faster at 
finding vulnerabilities

• Single-language tools had same vulnerability 
coverage

Image Scan Tools
• Grype
• Trivy

• Trivy and Grype detected a similar number of 
vulnerabilities in almost all cases

• Grype ran faster on average, but Trivy had lower 
standard deviation

• Grype used reduced disk size compared to Trivy



Thank you


	Ground and Space Development, Security, and Operations for Reconfigurable Edge Platforms
	Transitioning Toward Dynamic & Distributed Space Cloud Architectures
	Future Dynamic & Distributed Space Cloud Architecture
	Example Scenario
	DevSecOps Sequence of Events
	Developer Pipeline
	Reference Architecture
	Reference Architecture
	Reference Architecture
	Reference Architecture
	Integrator Pipeline
	Reference Architecture
	Reference Architecture
	Reference Architecture
	Conclusion
	Backup
	Onboard DevSecOps
	Onboard DevSecOps
	Aerospace’s Dynamic & Distributed Space Cloud Architecture
	Current Static & Stovepiped Satellite Architecture
	Future Dynamic & Distributed Space Cloud Architecture
	Motivating Scenario
	Nebula {X}
	Levels of Compute Reconfigurability
	Reconfigurable Compute Diagram: Module Swapping
	Background
	Reference Architecture
	CPU Containers
	FPGA Bitstream
	GPU AI/ML Networks
	Reference Architecture
	Integrator Pipeline Development Stage
	Integrator Pipeline Security Stage
	Integrator Pipeline Operational Stage
	Security Scan Tools
	Thank you

