GENERAL DYNAMICS

Mission Systems

COMPARATIVE EVALUATION OF ANOMALY DETECTION SOLUTIONS ON SATELLITE TELEMETRY

February 27th, 2024 Andrew Robbertz

Satellite Telemetry Overview

GENERAL DYNAMICS

Mission Systems

Machine Learning-Based Anomaly Detection

- Spacecraft are ideal candidates for ML-based telemetry analysis and anomaly detection (AD)
 - Highly instrumented
 - High periodicity
 - Limited interaction with external factors
- Previous research demonstrates that ML is effective at detecting anomalous events in satellite telemetry
 - Risk reduction through increased situational awareness, faster analysis of anomalies
 - Reduced downtime of satellite components
 - Cost savings through reduced labor hours to review telemetry
- Still using human-in-the-loop review
 - ML filters through large quantities of time-series telemetry
 - Imperative to have Low False Positive Rate to not overwhelm manual reviewers

Previous studies are relatively isolated, which raises unanswered question – How do we tell which ML solutions are better than others for anomaly detection?

Problem Space

PREVIOUS RESEARCH

Previous research does not allow direct comparisons between ML solutions.

OUR **APPROACH**

RESULTS 1

Our approach allows direct performance comparisons.

Machine Learning for Telemetry Analysis (MALTA) Project Objective:

Create detailed, direct comparisons of anomaly detection solutions for future satellite flight operations missions (Not to identify single best solution for all scenarios)

MALTA Evaluation Framework Methodology

- 1. Integrate standardized AD datasets for ML applications
 - Telemanom (GitHub) (Hundman et al., 2018)
 - LASP (GitHub) (Polson, 2019)
- 2. Integrate, optimize, and evaluate 6 unique ML anomaly detection solutions
 - Including COTS & Open-Source
 - Using multiple ML architectures and algorithms
- 3. Analyze qualitative and quantitative results for solution comparison

EXPERIMENT CONFIGURATION

DATASET CONFIGURATION

- Training Sample
- Test Sample

ALGORITHM CONFIGURATION

- Hyperperameters
- Single-Variate vs. Multi-Variate

EVALUATION FRAMEWORK

Dataset Adapters & Integrations

AD Solution Adapters & Integrations

RESULTS ANALYSIS

- Hyperparameter Tuning
- Confusion Matrices
- Anomaly Score Distributions
- ROC Plots

RESULTS AGGREGATION

DATASET	SOLUTION	VARIATE	HYPERPARAMETERS	STATISTICS
Dataset 1	Solution A	Single-Variate	Alpha=0.001	
Dataset 2	Solution B	Multi-Variate	Epsilon=1	

- Configurable to test any number of datasets and solutions during execution
- Extensible to new Solutions, and Datasets through common interfaces
- Interoperable to tune different features and parameters of different solutions

Hyperparameter Fine-Tuning

- Enables finding the most performant "settings" for each solution
- Previous research fine-tuned solutions with only one dataset causing apples-to-oranges comparison
- MALTA built-in fine-tuning provides best apples-to-apples comparison between solutions

© 2024 General Dynamics. All rights reserved. PRI-2401-0003 Published by The Aerospace Corporation with permission

MALTA Results

- Receiver Operating Characteristic (ROC)
 Plots show performance at varying anomaly score (confidence) thresholds
- Allows operations teams to identify solutions that best fit their needs
- Identify solutions with greatest performance at low false-positive-rates

MALTA Results

- Example Selection Criteria
 - 2000 telemetry variables to review
 - Cannot manually review >50 alerts per day
 - Requires a False-Positive-Rate (FPR) < 3%
- We can visually and programmatically examine results to find best solutions with low false-positive rates

MALTA Results

- Understand ML algorithm's "confidence" in its own classifications
- Smoother often better

© 2024 General Dynamics. All rights reserved. PRI-2401-0003 Published by The Aerospace Corporation with permission.

Combined Confusion Matrix allows us to directly compare class-by-class results at a given anomaly score threshold

Future Opportunities

- Evaluate additional tools, additional datasets, more use cases
 - Focus on detection of long-term trend changes, recurring anomalies
- Investigate ML Ensemble Techniques to improve performance
- Extend MALTA Evaluation Framework to execute parallel evaluations of multiple solutions

Thank you! / Questions?

