

Ground System Architectures Workshop

Leaping into New Space: How to Leverage and Integrate with Traditional Aerospace

February 26–29, 2024 Renaissance Los Angeles Airport Hotel Classified Session—February 29, 2024

Ground System Architectures Workshop

Space Enterprise Integration to advance U.S. Capabilities: Strategic Framework and High-Profile Commercial Use Cases

Lori Gordon and Ron Birk, The Aerospace Corporation

© 2024 The Aerospace Corporation

Working Group F Outbrief

February 29, 2024

Space Enterprise Integration Panel and Objectives

Focus - government leveraging commercial solutions for national missions with emphasis on integrating data/systems/networks with and among owners and operators – all in the national interest.

High profile commercial use cases:

- Ground Networks for Space Communications
- LEO and Cislunar Space Domain Awareness
- Space Logistics / On-Orbit Servicing for National Missions

The leadership panel:

- Dr. Claire Leon, Director, Space Systems Integration Office, SSC
- Mark Quinn, Chief Executive Officer, Willis Towers Watson, Global Inspace
- Randy Kendall, Vice President Launch, Missiles, and Mobility, The Aerospace Corporation

Working Group F

Panel

Dr. Claire Leon

Mark Quinn

Randy Kendall

Key Points

Aligning Information across Enterprise to Inform Decisions for Stakeholders

- Part 1: Panel comprised of Acquirer, Insurer, and Integrator highlighted plans and progress for integrating commercial solutions, with use cases, to advance U.S space capabilities in the national interest.
- Part 2: Town hall meeting captured information on best practices and challenges to achieve space enterprise integration going forward.

Key Points

- Interdependence across space ecosystems
- Testbeds and Proving Grounds to build confidence and trust
- Business Cases for sustainable services and solutions

Working Group F

Rapidly develop, deploy, evolve

Conclusions

Attendee input to 3x3 matrix informing Enterprise Integration going forward

	Ground Networks for Space Communications	LEO and Cislunar Space Domain Awareness	On-orbit
Interdependencies Across Space Systems	 Synchronization across systems Standards – intersatellite links – OTC (unclass) SDA standard starting to be adopted – likely 2 standards (networking and orchestration) IEEE / ISTO digitization interface standards Mobile ad hoc networks / adaptation to high latency 	 Synchronization across LEO, GEO and out to Cislunar Implementation plans Comm & Nav Integration across agencies to include timing standard Adopt Open Source, Blockchain, and Zero Trust methodologies Ensure continuous authority to operate (C-OTA) via continuous patching 	 Synchronizat CONFERs ad and S-158 USSF IEEE state Explore Licer Accessing an Expand use of
Testbeds & Proving Grounds to Build Confidence & Trust	 Reference ComSatCom TB&PG TB&PG awareness, coordination, and partnering recommended Develop a bank of authoritative sources of truth (ASOTs) Engage UARCs, FFRDCs, DoD & Civil Digital Engineering teams Do we need a champion? Recognize acquisition leads' vision for multiple test ranges ISAM State of Play Appendix 9 lists 50 TB&PGs Commercial test beds for weather – resurrect CRADA engagements 	 Digital engineering ecosystem SimCislunar Explore more in 3GPP and WIFI on the moon Lunanet/Lunar Comm Relay and Nav Systems (LCRNS) test set Who would use these – primes or startups? Cost considerations as well as IP – marketing initiative as well as protocols/procedures/interoperability Establish governance model (benchmark use of Space ISAC) Make Space Digital Ecosystem and Integration (SpaceDEN classified testbed to perform live simulations available to small commercial companies 	 Apply Edge I Mission Externation RPO / refuel NRL space r AFRL space r Who would consideratio National ISA on use of TB
Business Cases for Sustainable Services and Solutions	 Focus on national level capabilities - fund fewer widgets to close the C2 business case SDA published OTC standard recommended by industry (Consultative Committee for Space Data Systems (CCSDS), others) Standards are key to affordability, integration, interoperability - look at aspects to focus on toward interoperability NRO Commercial Systems Program Office (CSPO) strategic commercial enhancements program engages/supports range of business cases 	 Start tracking protocols, methodologies Timing and ranging Establish common semantic ontology among agencies Leverage NASA Moon to Mars strategy Expand commercialization of non-earth imagery Demand for commercial in cislunar, but no real business case for experimental capabilities to date Use CORDS to track and manage space debris NRO CSPO strategic commercial enhancements program 	 End user lice Must ancho MDA/NRO/c must docum Establish po Currently may for experime Gen Purdy – mobility con Leverage NA Capabilities

Working Group F

Space Logistics / t Servicing for National Missions

tion between spacecraft and systems Ivancing ISO 24330 (2022) and AIAA S-155, S-157,

andards nsing agreements nd using data of Prototypes in response to demand signal

Node TB&PG for ISAM AI for RPO/OOS ension Vehicle (MEV) Space logistics / docking / ling (ATK as well as SDL) robotics lab robotics lab use these – primes or startups? Cost ons as well as IP M Strategy and implementation plan raises point 3&PG

ense agreements for commercial reconnaissance or delivery in operational requirement

- other mission owners who have requirements nent operational capability
- blicy for improved behavior/responsible use (NSC) hay not be a business case or a vision and strategy ental ISAM – who leads/drives?
- 'assured access to space' ideated on a space mmand – anchor tenant relationship needed? ASA Consortium for Space Mobility and ISAM (COSMIC)

Conclusions EXAMPLE INPUTS

Attendee input to 3x3 matrix informing Enterprise Integration going forward

	Ground Networks for Space Communications	LEO and Cislunar Space Domain Awareness	On-orbit
Interdependencies Across Space Systems	 Integration of space network entities present new challenges to the implementation of conventional routing protocols, resource management, and mobility management Impacting the integrity of communications is the frequent handoff between satellites and air/ground networks and routing and link security 	 Supply chain interdependencies across numerous sectors (transportation, critical manufacturing, energy) must be more visible and coordinated to reduce sourcing/logistics/security concerns 	- Coordina developm commerc
Testbeds & Proving Grounds to Build Confidence & Trust	 Develop TB&PG with high fidelity, operationally relevant environment for mission management, C2 testing, bidirectional space to ground communications, anomaly resolution, and anomaly scenario development 	 Distribute results of testbeds to users beyond those investing in testbeds – for example, users who are looking to demonstrate similar capabilities or in tangential sectors 	- Enhance via in-orb digital tw for the sp in the virt
Business Cases for Sustainable Services and Solutions	 Environmental, Social, Governance (ESG) concepts for ground networks must go beyond controlling orbital debris risk, and actively avoiding collisions to include redundancy and the capability of removing spacecraft from orbit 	- Develop novel technologies to increase spacecraft endurance	- Establish
Working G	roup F		

٦

Space Logistics / Servicing for National Missions

te plans and schedules for on-orbit nent across the interagency and with cial

the orbital simulation environment pit simulation robots benefitting from in capabilities, which act as a proxy pace environment and enable testing tual world

the value chain