

Implementation and Feasibility of Using Al/ML Methods for Satellite **Anomaly Detection, Diagnostics, and** Resolution.

National Environmental Satellite, Data, and Information Service, NOAA

Justin Gronert, Office of Satellite and Product Operations Raad A Saleh, Office of System Architecture and Engineering

CEANIC AND ATMOSAL

NOAA

PARTMENT OF COMM

Ground System Architectures Workshop 2025

The Challenge

One of the significant challenges in weather satellites is maintaining their health and keeping them continuously operational on orbit.

Satellites often experience on-orbit anomalies hence requiring real time detection, diagnosis, and resolution.

These processes are manpower-intensive, costly, and are addressed on an ad-hoc basis subject to the level of expertise and available resources at the time of the anomaly.

The Goal

Investigate the use of artificial intelligence and machine learning, Al/ML, technologies to handle satellite anomalies through three distinct phases, detection, diagnosis and resolution.

The premise is that AI/ML, if properly applied, have the potential to both improve responsiveness and accuracy of anomaly handling while reducing manpower requirements.

National Environmental Satellite, Data, and Information Service

Anomaly Detection

- Satellite telemetry is continuously monitored to identify anomalies.
- Real-time assessment of telemetry probes into related measurands.
- These are trending in a way that would reveal an underlying problem.
- Deeply understand healthy operation and nominal telemetry values.
- Deeply understand how different measurands are related.

Anomaly Diagnosis

- Real-time telemetry is analyzed along reference measures and compare values.
- Identify the likely state of the satellite systems that are creating the anomalous telemetry.
- Possible reasons include rising temperature, sensor malfunction, or battery overcharge.
- Reaching the correct diagnosis requires understanding how the telemetry reflects the nominal satellite state.

National Environmental Satellite, Data, and Information Service

Anomaly Resolution

- Once Diagnosis is confirmed, remedial action is formulated for execution.
- Satellite commands or other actions are taken to resolve the anomaly.
- Examples include sending a command to stop charging the overheating battery, sensor recalibration, solar panels reorientation, or others.
- Confirmation of Resolution and Normal Operation

LEO Anomaly Example (S-NPP CDP Reset)

S-NPP CDP Reset Example Overview

- Since 2012, The Suomi National Polar-orbiting Partnership (S-NPP) has had 6 occurrences of a Command Data Processor (CDP) reset.
 - The CDP handles both Realtime & Onboard Commanding, as well as On-Board Data Processing to the Recorder
- CDP Resets often do not manifest in the same manner, and its possible each occurrence could cause differing spacecraft impact(s)
 - Once S-NPP is in a degraded state, it is further possible for additional unexpected anomalies to occur
- Recovery from a CDP Reset is very operator-intensive and can span a duration from 1 day to more than a Month

S-NPP CDP Reset Challenge

- S-NPP only has a single mnemonic identified that will flag if a CDP Reset occurs.
 - Sometimes, this "count" does not increment due to unique circumstances.

SMCDPRS = 0

SWCRS flag = Reset

- Engineers then need to review TLM from other subsystems to reconcile if a CDP Reset is the potential root cause
- Depending on the state of each Subsystem, recovery steps for a CDP Reset can vary widely
 - Quick Recovery (<1 Day) requires resetting the CDP within ~6 Orbits of the Anomaly, prior to Instrument Safing/Instrument Thermal Degradation

S-NPP CDP Reset Goal

Given S-NPP's various CDP Reset scenarios, it would be advantageous
if a tool could correlate downlinked TLM against each possible
scenario; For example:

"Textbook Reset"

SMCDPRS = 1 SWCRS flag = Reset "Anomalous Scenario 1"

SMCDPRS = 0 SWCRS flag = Reset "Anomalous Scenario 2"

SMCDPRS = 1 SWCRS flag = null

Subsystem Status TLM Enabled
SMD Disabled
Recorder Disabled
Instruments Earth Point
ACS/PWR/PROP Nominal

TLM **Disabled**SMD **Off-Nominal**Recorder Disabled
Instruments **Safe Mode**ACS/PWR/PROP **Off-Nominal**

TLM Enabled
SMD Off-Nominal
Recorder Disabled
Instruments Earth Point
ACS/PWR/PROP Nominal

 Goal is not to replace Engineers in every scenario, however to assist in a more rapid recovery

S-NPP CDP Reset Anomaly Diagnostic States

- At first contact post S-NPP CDP Reset, The following could be the only information available:
 - Only Realtime TLM is available, No Backorbit Storage State of Health
 "Textbook Reset" "Anomalous Scenario 1" "Anomalous Scenario 2"

SMCDPRS = 1 SWCRS flag = Reset SMCDPRS = 0 SWCRS flag = Reset SMCDPRS = 1 SWCRS flag = null

Subsystem Status TLM Enabled
SMD Disabled
Recorder Disabled
Instruments Earth Point
ACS/PWR/PROP Nominal

TLM **Disabled**SMD **Unknown**Recorder **Unknown**Instruments **Unknown**ACS/PWR/PROP **Unknown**

TLM Enabled
SMD Off-Nominal
Recorder Unknown
Instruments Unknown
ACS/PWR/PROP Nominal

Limited Information Available

S-NPP CDP Reset Anomaly Resolution

- Based on prior anomaly handling experiences, it has taken from 2 Orbits to 2
 Days to isolate the specific CDP Reset Recovery steps per reset scenario.
- Recovery from known CDP Reset Scenarios occurs more rapidly than in more novel occurrences.
 - New Scenarios require significant Analysis to ensure no additional harm occurs to the Spacecraft prior to performing Recovery Commanding.

S-NPP CDP Reset Anomaly Resolution, Cont'd

- However.....
 - More automated Analysis of TLM to correlate TLM to known CDP Reset "Signatures" would be advantageous to Engineers
 - Having an Al/ML Tool be able to automatically develop signatures and recovery steps would be the ideal scenario.
 - As a Stretch Goal, automated recovery of the Spacecraft to CDP

Resets that match known "Signatures" would be ideal

Automated Spacecraft Anomaly

Identification & Response

Realtime Detection, Diagnosis, and Resolution (Legacy Process)

- Spacecraft Operations nominally requires Engineers to review downlinked
 Telemetry via Realtime and Trending Tools to isolate anomalous signatures
- Oftentimes significant discussion is required amongst a diverse team to identify all potential constraints, recovery commands, and alternatives
- While this approach is adequate to safely recover a spacecraft, it is manpower intensive, time consuming, and costly.
- Furthermore, humans can induce further issues, uncertainty, and errors.

Realtime Detection, Diagnosis, and Resolution (Legacy Process, Cont'd)

In Addition....

- Spacecraft today include automated Fault Recovery Subsystems which provide onboard detection, diagnosis and commanding if fault signatures occur.
 - Automated Fault Recovery capabilities are typically developed to only recover or safe from critical and loss-of-mission scenarios
 - On-Board Fault Recovery is typically not developed to recover from less impactful scenarios, and or trivial issues/anomalies identified during Ops
- This "GAP" to allow for recovery from novel operational scenarios requires further focus by both the Government and Industry.

Automated Anomaly Identification & Response (Goal)

- A combination of two capabilities could exist to support Automated Spacecraft Anomaly Identification & Response
 - Option 1 (Ground Based Identification & Response)
 - Ground System based recovery of Spacecraft Anomalies in an automated manner
 - Inclusion of Operator Developed Anomaly Signatures into a Ground Based Tool
 - Option 2 (Onboard Identification & Response)
 - Identification and Recovery of Spacecraft Issues/Anomalies is performed onboard via a Fault Recovery like Subsystem
 - Inclusion of Operator developed Issue/Anomaly Signatures into FSW
 - Combination (Both Ground & Onboard Identification & Response)

Automated Spacecraft Anomaly Identification & Response (AI/ML Challenge)

- While possible to develop discrete recoveries based off of every known scenario, there can be a plethora of potential unknown signatures that require consideration
 - Every constraint, per component and or subsystem, for each scenario is likely not included in most Fault Response signatures
- Some type of machine learning and or Al/ML capability will need to be developed to support this desired functionality
 - Removing the Engineer-in-the-Loop will reduce mission cost, w/ increased risk
- Automated recovery capabilities, per individual scenario, will need to be tailored based off of each mission classification & risk posture

The Economic and Cost-Saving Driver

So why AI/ML...

- Manual Resolution Cost:
 - Based on experience: Depending on the Anomaly:
 - Up to 10 FTE are needed
 - Between 1 30 days in Duration
 - Locks other Resources, e.g., Station Time, Ground System, etc...

AI/ML Resolution Cost:

- Initial Development is resource intensive; Long-term its saves cost
 - Algorithms
 - Training Data
 - Testing, Validation
 - Reduction in Ops FTE's

The Cost of Failure

However both are prone to issues...

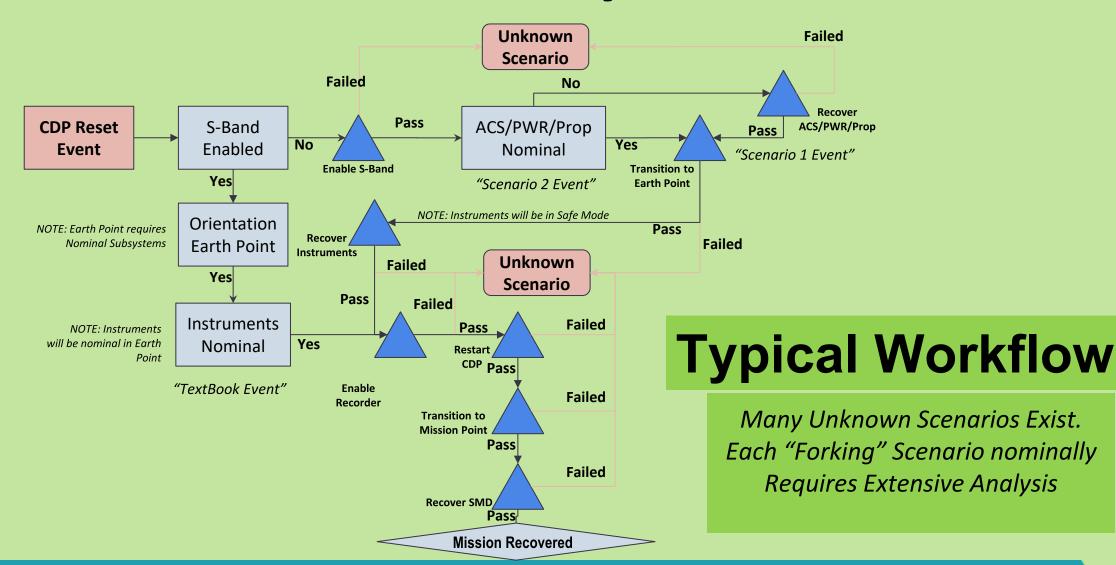
- Manual Methods:
 - Extended Time
 - Extended Labor
 - Lack of Success

- AI/ML Methods:
 - Poisoning Signatures and Training Data
 - Adversarial Vulnerabilities
 - Cascading Failures

Conclusions

- Human driven anomaly handling capabilities exist today, but slowly evolving into AI/ML driven methods in new missions
- Investment is needed in developing Al/ML capabilities to remove the Engineer-in-the-Loop approach occurring today.
- Recognition that with AI/ML vulnerabilities are a core factor

Conclusions, Cont'd


- Space Cybersecurity is a fundamental aspect of AI/ML-**Driven Anomaly Handling**
- Space Missions Requirement and Formulation need to evolve to include AI/ML anomaly handling
- Requirements MUST INCLUDE vulnerabilities handling, adversarial scenarios, and prudent design and engineering.

Backup

S-NPP CDP Reset Anomaly Resolution, Cont'd

S-NPP CDP Reset Anomaly Diagnostic States (Cont'd)

- At Subsequent contacts after a S-NPP CDP Reset, The following could be the only information available:
 - Likely only Realtime TLM is available; Still no Backorbit Storage State of Health
 "Textbook Reset" "Anomalous Scenario 1" "Anomalous Scenario 2"

SMCDPRS = 1 SWCRS flag = Reset SMCDPRS = 0 SWCRS flag = Reset

SMCDPRS = 1 SWCRS flag = null

Subsystem Status TLM Enabled
SMD Disabled
Recorder Disabled
Instruments Nominal
ACS/PWR/PROP Nominal
Orientation Earth Point

TLM Enabled
SMD Off-Nominal
Recorder Unknown
Instruments Unknown
ACS/PWR/PROP Off-Nominal
Orientation Sun Safe

TLM Enabled
SMD Off-Nominal
Recorder Unknown
Instruments Unknown
ACS/PWR/PROP Nominal
Orientation Sun Safe

Additional Information Available

