THE AEROSPACE CORPORATION

Tailoring Groﬁ,yghftware Standards Towards
Automation and Augmentation

K —— - Jesus Rodriguez
_— > VAlan,Kwan
Software Process, Modeling and Measurement Depg‘rtment

The Aerospace Corporation

. February 26, 2025

© The Aerospace Corporation, 2025

Software Development Standards for Mission Critical Software

* SMC-S-012 — Space and Missile Systems Software Development Standard
— The SMC/SSC standard for mission critical software
— Prescriptive processes aimed at qualification of software to meet mission critical requirements

e |[SO-IEC-IEEE 12207-2017 Systems and software engineering — Software life cycle
processes

— A generic software engineering standard (business or mission software)
* Specifies the “what”, not the “how”
* Software life cycle model agnostic

* How do we leverage both standards and the latest software development best practices?
— Agile Software Development (e.g., Augmentation)
— DevSecOps (e.g., Automation)
— Al/ML

\ 3

IEEE 12207 Standard — Overview
ISO-IEC-IEEE 12207-2017 Systems and software engineering — Software life cycle processes

* A generic software engineering standard
— Business or mission software
* Processes for all software life cycle stages
— Concept, development, sustainment, and retirement
* Comprehensive set of software life cycle process groups
— Agreement Processes
— Orqganizational Project-Enabling Processes
— Technical Management Processes
— Technical Processes

* We will focus on the Technical Processes with a focus on Augmentation, Automation, and AI\ML

IEEE 12207 Standard — Technical Processes

« Business or Mission Analysis process

« Stakeholder Needs and Requirements Definition process
+ System/Software requirements definition process
» Architecture Definition process

* Design Definition process

+ System Analysis process

* Implementation process

* Integration process

» Verification process

+ Transition process

+ Validation process

* Operation process

* Maintenance process

+ Disposal process

Business or Mission Analysis process
IEEE 12207 Standard — Technical Processes

* Business or Mission Analysis process

— Defines the business or mission problem or opportunity, characterizes the solution space, and determines
potential solutions.

* SMC-S-012 Business or Mission Analysis process
— SMC-S-012 does not address business or mission analysis process

* Business or Mission Analysis process in Agile and DevSecOps
— Continuous stakeholder engagement to gather feedback, clarify requirements, and adapt the product vision.
— Business needs are translated into user stories to describe a feature from the user’s perspective.

— Product backlog is reqularly refined by the product owner, development team and stakeholders to prioritize
features based on business value and feasibility.

— Business analysis is an ongoing process where requirements are continuously refined and validated.

Stakeholder Needs and Requirements Definition Process
IEEE 12207 Standard — Technical Processes

* Stakeholder Needs and Requirements Definition process

— Defines the requirements for the software system that provide the capabilities needed by users in a defined
environment.

— Operational concept view of requirements.
— Includes identification of critical performance measures, critical requirements, and bidirectional traceability
— Described in technical requirements documents (TRDs)

* SMC-S-012 Stakeholder Needs and Requirements Definition process
— Very similar to IEEE 12207

* Stakeholder Needs and Requirements Definition process in Agile and DevSecOps

— Agile teams use user stories, which describe a user's need from their perspective, to capture stakeholder
requirement in a concise way.

System/Software Requirements Definition Process (1 of 2)
IEEE 12207 Standard — Technical Processes

* System/Software Requirements Definition process
— Transforms the stakeholder or user requirements into technical, software requirements

* Attributes: necessary, implementation-free, unambiguous, complete, singular, feasible, traceable,
verifiable, and bounded

— Described as use cases, features, user stories, or scenarios

— Includes interface, data, and database requirements

— Includes verification methods

— Includes constraints, but suggests not to imply any specific implementation

— Includes identification of critical performance measures, critical requirements, and bidirectional traceability
* SMC-S-012 Requirements Definition process

— Very similar to IEEE 12207

— Government constraints often require specific implementations

System/Software Requirements Definition Process (2 of 2)
IEEE 12207 Standard — Technical Processes

* Requirements Definition process in Agile and DevSecOps
— Agile encourages an iterative process in defining requirements
* Challenge with end user involvement on defense systems
— Requirements can change with any software development life cycle model (including waterfall)
— Requirements for defense systems tend to be well defined up front (not as much need for change)

— Requirements should be prioritized to enable incremental and iterative development, use of Cl/CD
pipelines, early integration and risk reduction

Architecture Definition Process

* Architecture Definition process
— Defines the software architecture (models and views), assesses and manages the architecture
— Goal for an architecture that is as design-agnostic as possible to allow for maximum design flexibility
— Defines the elements or modules of the software and relationships between them to meet the requirements

* SMC-S-012 Architecture Definition process

— Not as detailed as IEEE 12207 in the main architecture definition section, but more detailed by requiring the
use of Software Architecture Description (SAD) template

— Requires using modular open systems architecture (MOSA)
— Requires consideration for unit integration, HW/SW integration, and system integration
* Architecture Definition process in Agile and DevSecOps

— Encourages iterative or incremental development of the software architecture, however, doesn’t restrict a
complete architecture up front

* However, changes to the architecture late in the software life cycle should be avoided

— Define enough of the architecture to enable implementation of the highest priority requirements through a
Cl/CD pipeline

— Use of open, industry standards interfaces (for cyber and use of CI/CD toolsets)

Design Definition Process
IEEE 12207 Standard — Technical Processes

* Design Definition process
— Detailed design of the software elements, interfaces, and databases
— Performed iteratively and incrementally with requirements definition and architecture definition

* SMC-S-012 Design Definition process
— Coupled with architecture definition

— Not as detailed as IEEE 12207, but more detailed by requiring the use of Software Design Description
(SDD) template

* Design Definition process in Agile and DevSecOps
— Performed concurrently with implementation
* E.g., Design what is needed for the current sprint
— Use of automated tests and CI/CD to catch interface incompatibilities for design changes
— Use of DevSecOp tools can drive software design pattern choices

* E.g., Modeling & Simulation tools with GUI — separate GUI layer from algorithm logic to unit test each
separately and identify where errors occur immediately

10

System Analysis Process
IEEE 12207 Standard — Technical Processes

11

System Analysis process
— Provides data and information for technical understanding to aid decision-making across the life cycle

— Used for analytical needs concerning operational concepts, determination of requirement values, resolution
of requirements conflicts, assessment of alternative architectures or system elements, and evaluation of
engineering strategies (integration, verification, validation, and maintenance).

SMC-S-012 System Definition process
— Coupled with architecture definition

— Not as detailed as IEEE 12207, but more detailed by requiring the use of Software Design Description
(SDD) template

System Analysis process in Agile and DevSecOps
— Performed concurrently with implementation
* E.g., Design what is needed for the current sprint
— Add tactics (e.q., logging) to check component health (heartbeat), functional correctness, and performance

Implementation Process

* Implementation process

— Develop the software system in accordance with its architecture, design, and interface definitions to meet
its requirements

— IEEE 12207 strives for being less prescriptive, but includes strategies like test driven development, code
coverage, other unit testing strategies (e.g. use of simulators)

— Suggests being done concurrently with integration and along with Verification (which identifies anomalies
(errors, defects, faults) and Validation processes

— Encourages the use of automated tests (doesn’t suggest how)

* SMC-S-012 Implementation process
— Combines implementation process with unit testing
— Emphasis is on unit testing, including nominal and off-nominal testing

* Implementation process in Agile and DevSecOps and use of Al/ML
— Encourages the use of continuous integration and automated unit testing
— Use of AI/ML can accelerate writing source code and unit tests (e.q., use of Copilot)

12

Integration Process

* |[ntegration process
— Includes the integration of systems or system elements and interfaces

— Coordinates with Architecture Definition and Design Definition processes to check that interface definitions
are adequate and that they consider the integration needs.

— Software system integration iteratively combines implemented software system elements to form complete
or partial system configurations to build a product or service.

— Software integration is performed daily or continuously during development and maintenance stages, using
automated tools.

* SMC-S-012 Integration process

— Focuses on integration with software units, and the software items with the hardware items on which they
execute

— Heavy emphasis on regression
— Use of simulators and emulators

* Integration process in Agile and DevSecOps

— Utilizing Continuous Integration tools to automate integrating changes into the software

— Existing automated tests will check against changes and immediately flag failed tests, and prevent those
changes from being committed

13

Verification Process

* Verification process

— Identifies the anomalies (errors, defects, or faults) in any information item (e.q., system/software
requirements or architecture description), implemented system elements, or life cycle processes using
appropriate methods, techniques, standards or rules.

— For software systems, it includes software verification, software qualification testing and system
qualification testing.

* SMC-S-012 Verification process

— Specifies Software Item Qualification Testing (SIQT) to verify requirements in the Software Requirements
Specification (SRS) and software-related interface requirements in Interface Requirements Specifications
(IRS)

— Defines requirements for Software-Hardware item Integration and Testing, and System Qualification Testing

* Verification process in Agile and DevSecOps
— Automated testing in conjunction with Continuous Integration
— Early testing provides risk reduction

14

Transition Process

* Transition process

— Moves the system in an orderly, planned manner into the operational status, such that the system is
functional, operable and compatible with other operational systems.

— Installs a verified system with enabling systems, e.q., planning system, support system, operator training
system, user training system, as defined in agreements.

— It is used at each level in the system structure and in each stage to complete the criteria established for
exiting the stage. It includes preparing applicable storage, handling, and shipping enabling systems.

— For software systems, the purpose of the Transition process is to establish a capability for a system to
provide services in a different environment.

* SMC-S-012 Transition process

— Defines documentation (version descriptions, manuals, and plans) required for acquirer to install,
understand, use, and maintain the software for operations.

* Transition process in Agile and DevSecOps

— Continuous Integration and Continuous Delivery tools to help automate software artifacts, as well as
automated deployment into operational environments

15

Validation Process
IEEE 12207 Standard — Technical Processes

* Validation process

— Its objective is to acquire confidence in the ability of a system or system element to achieve its intended
mission, or use, under specific operational conditions. Validation is ratified by stakeholders.

— It provides the necessary information so that identified anomalies can be resolved by the appropriate
technical process where the anomaly was created.

— For software systems, it includes software validation, and software acceptance testing.

* SMC-S-012 Validation process
— Includes Independent Verification and Validation (IV&V)
— More emphases of validating elements used in verification of requirements

* Validation process in Agile and DevSecOps

— User acceptance feedback provides validation of software capability, or provides discovery of changes
required

16

Operation Process
IEEE 12207 Standard — Technical Processes

* Operation process

— Establishes requirements for and assigns personnel to operate the system and monitors the services and
operator-system performance.

— Identifies and analyzes operational anomalies in relation to agreements, stakeholder requirements and
organizational constraints to sustain services.

* SMC-S-012 Operation process
— Defines requirements for developing plans for operations and for installation, configuration, and checkout

— Single requirement to define plan for uninterrupted operations through transition, and continuity of
operational data through each transition

* Operation process in Agile and DevSecOps
— Continuous Delivery provides immediate operational use, driving feedback to developers for improvements
— Rollback capability of data and software used to mitigate any catastrophic, unexpected errors

17

Maintenance Process

* Maintenance process

— Monitors the system’s capability to deliver services, records incidents for analysis, takes corrective,
adaptive, perfective and preventive actions and confirms restored capability.

— For software systems, the Maintenance process makes corrections, changes, and improvements to
deployed software systems and elements.

— The need for software system maintenance arises from latent system defects, changes to interfaced
systems or infrastructure, evolving security threats, and technical obsolescence of system elements and
enabling systems over the system life cycle.

* SMC-S-012 Maintenance process

— Defines manuals required to maintain the system, and developer responsibilities (to acquirer) for the
installation, checkout, training, and assistance.

* Maintenance process in Agile and DevSecOps
— Continuous monitoring of applications and infrastructure for security vulnerabilities
— Automated patching of identified issues
— Regular review of security configurations and update of security tools throughout the software lifecycle

18

Disposal Process

* Disposal process
— Deactivates, disassembles and removes the system or any of its elements from the specific use.

— Addresses any waste products, consigning them to a final condition and returning the environment to its
original or an acceptable condition.

— Destroys, stores, or reclaims system elements and waste products in accordance with legislation,
agreements, organizational constraints and stakeholder requirements.

— Includes preventing expired, non-reusable, or inadequate elements from getting back into the supply chain.

— For software systems, it encompasses the termination of services and disposal of software elements,
stored data, media and firmware, information items, and associated hardware elements that will not be
reused or transitioned to another system.

* SMC-S-012 Disposal process
— Not mentioned

* Disposal process in Agile and DevSecOps
— Not particularly mentioned in Agile / DevSecOps

19

Discussion Topics

20

e S0

T

SMC-S-012 vs ISO-IEC-IEEE 12207-2017

How do we leverage both standards to provide a better software development standard?

* The IEEE 12207 contains a comprehensive set of development life cycle process

— However, in making them life cycle model agnostic, it misses key practices for complex mission software (e.qg,
complex integration)

* The SMC-S-012 contains more detailed unit test, integration, and validation processes
— However, is very brief in the implementation processes

* What are other strengths from either standard?
* What are other weaknesses that could be improved?

21

.

Artificial Intelligence / Machine Learning in Software Development
Future impacts to Software Development Life Cycle

* What applications of AI/ML can be applied to a Software Development Life Cycle?

* Currently ChatGPT and Copilot have no problems doing menial coding tasks such as:
— Write me a binary search segment given a [data structure] and output the result as a string.

* Difficulties in writing complex architecture but may have improvements in the future. However... how much
do prompts to the language models matter?

— If the goal is to automate as much code as possible in the future, then should there be more emphasis on writing
requirements?

22

DevSecOps — Continuous Integration / Continuous Deployment
How does software architecture change?

* Encourages Continuous Integration and Continuous
Deployment

* Automated testing highly recommend — does this also
encourage certain software architectures/patterns to
make testing feasible and maintainable?

- MVC
— Microservices
— Anything else?

[Source: OTR-2020-00382]

23

Ground Segment — Traditional to Cloud Infrastructure
Modernization, Open Architecture, and Agility

Space Segment Space Se.gment
(Satellites) (Satellites)
(\ /X\
Ground Station / Customer Destination Region \
Launch #
and I&T [« Control Center User
Facilities ¢ — Terminals
Ground Station
Remote
_ Yy, Terminals
Ground Segment \ j

Ground Station as a Service

(e.g. Amazon, Azure)

Current Ground Segment
Architecture

24

Ground Segment — Traditional to Cloud Infrastructure
Modernization, Open Architecture, and Agility IEEE 12207-2017

Section 6.4.10 Transition process

* Traditional ground segments are contained within the system it is developed for; with a push for
modernization to cloud infrastructure ...

— How should ground software development differ in a cloud-based infrastructure?

— If there’s a shift from current ongoing operations, what are the implications and how does transitioning of
operations work? (IEEE 12207-2017 Section 6.4.10)

* How is software development impacted from new concepts such as Ground Station as a Service?

25

Interface Interoperability with Increased Modularity
Dealing with dependent modules, and data dependent driven changes between individual entities

* How can processes help interfaces be truly defined, integrated, and (configure) managed?

* Increased modularity, either by ... EEE 122072017
— Creating more and smaller software items Section 6.3.6 Information Management
— Simulation / Engineering Test Beds (and STE)
— Modular / Open Architectures

* Simplified Example (Sensor characteristic data):

Section 6.4.10 Integration
Section 6.4.4 Architecture Definition

How & when to Physical sensor pixel dies

update and
distribute at different
times to different

groups? Support Tools Operations
Sensor
Characteristic Data
Sensor Parameter: v v
Pixel List \'}
GSW ulEEzl) - FSW
Simulation
Multiple Updates
Parameters : :

M&S analysis sometimes drives GSW changes

26

Interface Interoperability with Increased Modularity
Dealing with dependent modules, and data dependent driven changes between individual entities

* How can processes help interfaces be truly defined, integrated, and (configure) managed?
® In~Arancoad madiilarihv aithar hyay -1

What’s also the best practice in testing all of this from unit, integration, and system end-to-end when there
are interdependencies between SW/teams, and when SW tools can change what they need to ingest from
source data (and when source data format can change too)?

How & when to Pnysical sensor pixerdies
update and it "
distribute at different : |
times to different I
groups? I Support Tools Operations
|
Sensor ~
Characteristic Data
Sensor Parameter:
Pixel List \'}
GSW ulEEzl) - FSW
Simulation
Multiple Updates
Parameters : :

M&S analysis sometimes drives GSW changes

27

Back Up Charts

Notes on Agile — IEEE 12207-2017

What’s different?
* “lterative” development and prototyping isn’t cunmuatve A I
new. (https://en.wikipedia.org/wiki/Spiral_model) DETERMNE] P e vALUATE
— First described by Barry Boehm in his 1986 paper, CONSTRAMTS RESOLVE RISKS

~ RISK ANALYSIS

“A Spiral Model of Software Development and

Enhancement”
. . . . RISK ANALYSIS
— In later publications, Boehm describes the spiral

model as a "process model generator,” where S

. . r . -
choices based on a project's risks generate an ST "
appropriate process model for the project. Thus, /1 AL STO\PROTOTYPE

. . ¥ '3 TYPE,
the incremental, waterfall, prototyping, and other REVIEW = _JTuow| s

] / CONCEPTOF]~ ™= =~ BENCHMARKS

process models are special cases of the spiral urE OYCLE |CORRRTON sormmame]~ = = 4

-

model that fit the risk patterns of certain projects.

DETAILED
DESIGN

SOF TWARE
PRODUCT

DEVELOP- 1 or qUIREMENTS

* First IEEE 12207 first published in 1996, 12207- MENT pLan | AEQUIREME oesion />~ < _
2017 mentions possibilities of various life cycle NTEGRATON T e v oA 1 o SO0E p
implementations o AND TEST | o ERIFICATION ...TEG;,I\lTJSISTT &

v acceer- \TIONT‘;';[I} >

IMPLEMEN- | ANCE TEST
TATION

DEVELOP, VERIFY W
NEXTLEVEL PRODUCT

[Source: OTR-2010-0107064833-0]

29

Notes on Agile — IEEE 12207-2017
Expand Upon Agile and DevSecOps?

* [IEEE 12207-2017 cognizant of iterative processes
— Example 6.4.3.3 System/Software requirements definition process — Activities and Task

NOTE 1 Reguirements definition involves iterative and recursive steps in parallel with other life cycle processes. Depending
on the life cycle model that is being employed, it is useful to compare the resources to be spent in assuring initial correctness
of requirements versus the resource needed to evolve requirements based on verification and validation results.

— Example: 6.4.11.1 Validation Process — Purpose

The Validation process is typically used at key points in a product's life cycle to demonstrate that the product's
requirements for stakeholder intended operational use have been met. Validation is also applicable to the software
engineering artifacts (viewed as software system elements). Different domains and engineering or development
communities can identify the milestones, validation strategies and criteria differently.

For software systems, highly iterative life cycle models often feature frequent involvement by the acquirer, user
representative, or other stakeholders to validate, e.g., the priority of requirements for inclusion in an iteration, the
usability of the software interface through prototypes, and the suitability of the software for performing business
taslks and fulfilling the operational concept.

* On top of iteration and prototyping, Agile frameworks typically highlight customer collaboration and
feedback.

Opportunity to expand upon these topics given Agile/DevSecOps is defined as the chosen lifecycle.

30

Notes on DevSecOps — IEEE 12207-2017

Security

* Security is referenced in 12207 by referring implementation via ISO/IEC Standards. This is

sufficient.

— Complex that cannot be singled to a general standard. Two types:

* Platform
° |IT
— DoD Programs already have:
* DODI 8500.01, 8510.01, 8570

* Program Protection Plan (PPP) that requires contractors to develop and implement a Program Protection

Implementation Plan (PPIP)
* RMF
* NIST 800-53 Security Controls
* ... and more.

31

6.3.1.3 Activities and tasks

The project shall implement the following activities and tasks in accordance with applicable organization policies
and procedures with respect to the Project Planning process.

a) Define the project. This activity consists of the following tasks:

1) Identify the project objectives and constraints.

NOTE 1_Obijectives and constraints include performance and other quality aspects, cost, time and customer and user
satisfaction. Each objective is identified with a level of detail that permits selection, tailoring and implementation of the

appropriate processes and activities.

NOTE 2_ISO/IEC 15026 Systems and software assurance, 1SO/IEC 27001 Information Security Management System and
ISO/IEC 27036, Information Security for Supplier Relationships, provide additional guidance on objectives and constraints
related to assurance and security.

Notes on DevSecOps — IEEE 12207-2017

Continuous Integration / Continuous Delivery

* Continuous Integration is already mentioned

— Can expand in Software Engineering Environment to set up infrastructure to support Cl/CD

* Continuous Delivery not always possible

32

— Can’t always deploy to operational environments (space platforms), can expand upon how
maintenance/transition/delivery are for Mission Critical Software that do not have a feasible method of updating

6.4.8 Integration process

6.4.8.1 Purpose

The purpose of the Integration process is to synthesize a set of system elements into a realized system (product or
service) that satisfies system/software requirements, architecture, and design.

This process assembles the implemented system elements. Interfaces are identified and activated to enable
interoperation of the system elements as intended. This process integrates the enabling systems with the system-
of-interest to facilitate interoperation.

Software system integration iteratively combines implemented software system elements to form complete or partial system
configurations in order to build a product or service. Software integration is typically performed daily or continuously during
development and maintenance stages, using automated tools. Continuous integration involves frequent inclusion or
replacement and archiving of items in software libraries under CM control.

	Tailoring Ground Software Standards Towards Automation and Augmentation
	Software Development Standards for Mission Critical Software
	IEEE 12207 Standard – Overview
	IEEE 12207 Standard – Technical Processes
	Business or Mission Analysis process��
	Stakeholder Needs and Requirements Definition Process��
	System/Software Requirements Definition Process (1 of 2)��
	System/Software Requirements Definition Process (2 of 2)�
	Architecture Definition Process�
	Design Definition Process�
	System Analysis Process�
	Implementation Process�
	Integration Process�
	Verification Process�
	Transition Process�
	Validation Process�
	Operation Process�
	Maintenance Process�
	Disposal Process�
	Discussion Topics
	SMC-S-012 vs ISO-IEC-IEEE 12207-2017
	Artificial Intelligence / Machine Learning in Software Development
	DevSecOps – Continuous Integration / Continuous Deployment
	Ground Segment – Traditional to Cloud Infrastructure
	Ground Segment – Traditional to Cloud Infrastructure
	Interface Interoperability with Increased Modularity
	Interface Interoperability with Increased Modularity
	Back Up Charts
	Notes on Agile – IEEE 12207-2017
	Notes on Agile – IEEE 12207-2017
	Notes on DevSecOps – IEEE 12207-2017
	Notes on DevSecOps – IEEE 12207-2017

