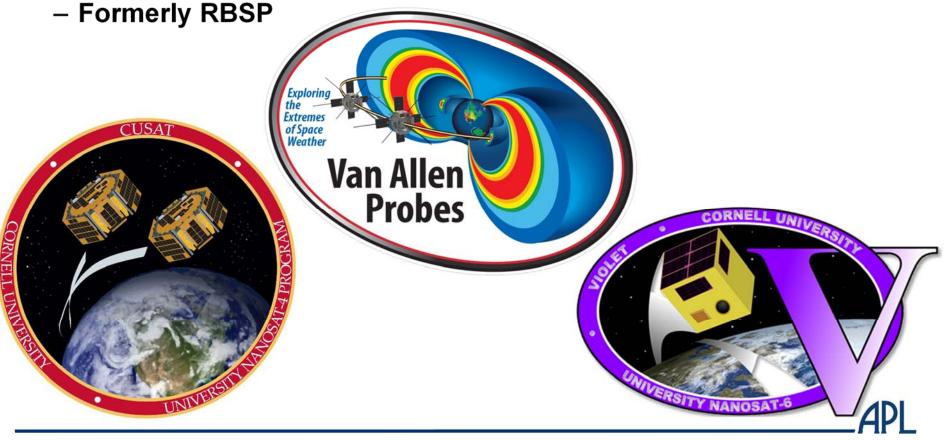
Flight Software Effects on Ground Systems

Nathaniel Parsons Associate Professional Staff Embedded Applications Group Space Department (443) 778-1612

Nathaniel.Parsons@jhuapl.edu

GSAW 2013



Published by The Aerospace Corporation with permission.

Applied Physics Laboratory

Project Experience

- 2007-2010 CUSat: Cornell University Satellite Project
- 2009-2010 Violet (Cornell University)
- 2010-2012 Van Allen Probes (JHU/APL)

Project Experience

- CUSat, Phase C/D
 - Ground Systems Lead
 - Telemetry & Commanding Subsystem
 - Software Systems Lead
 - InControl Software Lead
- Violet, Phases B C
 - Flight Software
- Van Allen Probes, Phases C E
 - Flight Software System Testing
 - Flight Software Independent Acceptance Testing
 - Integrated Electronics Module (FC enclosure) Box-level Testing
 - Mission Operations

Idea 1: Early Integration is Good

• Reveal problems earlier

- Interface Description
- Interface Implementation
- Interface Design
- User (Operator) Interface/Experience
- Before FSW or GSW design is frozenx

• Mini-MOC

- Package end-to-end ground system in 1 rack
- Initial delivery in Phase B
- FSW Developers use same interface as Ops
- Test script reuse as operations scripts

Idea 1: Early Integration is Good

- Initial Suggestion: Apply principle to other tools
 - Mission Planning
 - Analysis
 - ...
- Some tools may not be useful to devs as-is
 - Overkill for short tests -> separate relevant portions
 - Too cumbersome -> simplify and streamline
- Involve Ops in FSW/GSW testing

Idea 2: Compensating for FSW

- FSW often forced to simplify implementations
 - "There's still enough information in telemetry for the ground software to reconstruct what's happening."
 - If GSW doesn't do this automatically, Ops must fill gap manually
 - But Ops should always be thinking in the problem domain

• Examples

- CUSat parameter upload tool
- Command sequences stored as binary chunks
- Open loop G&C
- Non-streaming data (e.g. memory objects)
- On-board file systems
 - > Allocation and overfilling are major concerns for Ops
 - > Ability to recognize time critical/high priority data is key
 - > Filenames mean little without knowledge of recording configuration

E.g. 1100000055000000000_1_H

Idea 2: Compensating for FSW

- Initial Suggestions
 - Keep special track of these trades
 - Involve GSW and Ops
 - Verify GSW adequately reconstructs necessary info
 - Goal: hide FSW compromises from operator
 - Ask FSW devs to deliver testing tools

Idea 3: Debugging/Error Handling

- At first sign of anomaly, Ops must determine location and nature of fault
 - Flight systems (simpler, harder to debug)
 - Ground systems (more complex, easier to debug)
- Relevant fault scenarios
 - Working example: connection loss at data rate change
 - Misconfiguration
 - > Systems behaving as required, but not as expected
 - > Data rate change scheduled improperly by "operator error"
 - GSW error
 - > FSW responds correctly to incorrect GSW behavior
 - > GSW misformats data rate change command
 - FSW error
 - > FSW responds incorrectly to correct GSW behavior
 - > E.g. failure to make data rate change or unrelated safing

Idea 3: Debugging/Error Handling

- Initial Suggestions
 - Provide clear audit trail from operator intentions to FSW behavior

