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Motivation — Refactoring Architecture

e Successful systems are maintained over multiple years

e System’s Life-Cycle Properties worsen over time
® Understandability
® Testability
® Extensibility
® Reusability
* Restructuring/Refactoring helps to improve life-cycle properties
® Code Smells

* When and where to refactor a software system’s architecture?

USC 2




Motivation — IRODS - Prescriptive
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Source: https://www.irods.org/index.php/Introduction_to iRODS .



Motivation — iRODS
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Contribution and Goals

Categorization of Architectural Smells

° Components, Connectors, Interfaces, Data Elements, Concerns
i Separation of Concerns
o Coupling and Cohesion

Novel Architectural Recovery Technique
o Identification of Elements

g Concern Meta-Classification

Novel Architecture Representation
o Extended Augmented Constraint Network

° Design Structure Matrix

Architectural Smell Detection
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Connector Envy - Example

StrategyAnalyzerAgent g OanalyzeStrategy
’l
’
<<Slatevanablosos StrategyAnalyzerimpl J’
- requestBuffer . f_--—ar—c getRules
- localRules <77 | » anayzeStiategy
o - broadcastEven .
regions N—( isstrategyValid

e Component exhibiting interaction-related functionality that
should be delegated to connector

® Reusability, understandability, testability

e StrategyAnalyzerAgent from Emergency Response System
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Architectural Recovery for Smells

e Component identification
® Hierarchical clustering

® Concerns through topic modeling

® SAA - “strategy,” “rule,” “region”
e Connector identification
® Pattern matching, Supervised Learning
* Interface and Data Element Identification

e Concern Meta-classification

® Application-specific or connector-oriented concern
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Novel Architecture Representation

 Extended Augmented Constraint Network

® Uniform, formal way of capturing of architectural

decisions

® Constraint network, design rule, cluster set,

concerns from topic models
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Design Structure Matrix of ERS

1 Personnel Resources
2 Ul elements
3 Event and Message Management
4 Agent Rendering
5 Prism Architecture Object Management
6 Weather
7 Commander and Agents
8 Shared Data Structure Elements
9 Usage of Shared Data Structures
10 Main Ul Frame
11 Datalnterface
12 Componentinterface
13 Connectorinterface
14 Component_Renderingfgent
15 Component_SimulationAgent
16 Component_ResourceManager
17 Component_SAKBUI
16 Component_StrategyAnalyzer
19 Component_DeploymentAdvisor
20 Component_Resourcelonitor
21 Component_map
22 Component_Repository
23 Component_\Weather
24 Component_\WeatherAnalyzer
25 Component_StrategyAnalysiskB
26 Component_Clock
27 Commander
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Thank You
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Smells of Different Granularities

e Code smell Architectural smell

® (Code smells are implementation ® A commonly used architectural decision
structures that negatively affect that negatively impacts lifecycle properties
system lifecycle properties

Possible Causes

* Defined in terms of implementation-level * Applying a design solution in an
constructs inappropriate context
® Classes ® Mixing design fragments that have
® Methods undesirable emergent behaviors

® Statements Architectural Refactoring — The remedy

* Examples ® Altering the internal structure of the system
® lLong parameter list ® Altering the behaviors of internal system
® large methods elements

« Code smells do not necessarily address ® Avoid changing external system behavior

architectural decisions
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Ambiguous Interfaces — Description

e An Ambiguous Interface offers only one
public interface

e Internally dispatches to multiple services

e Appears especially in event-based
publish-subscribe systems ComponentA 2 | Q) process

* Example: IMS Publicinterface L/

e User has to inspect the component’s

+ process(GeneralType P) F’Tf" C: ss(G?r_leralType PX
. . ] \ I ( 'type - TypeA) {"'}
implementation before knowing about | if (Ptype == TypeB) {..}

its offered services

e Negatively affects
®* Analyzability
® Understandability
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Connector Envy — Description

« Connector roles

® Communication
® Coordination
® Conversion

®  Facilitation

e Components with Connector Envy
encompass extensive interaction-related
functionality

e Example: Gridfarm Filesystem Daemon
¢ Violates separation of concerns
¢ Negatively affects

® Reusability

®  Understandability

®* Testability
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Scattered Functionality — Description

e Multiple components are responsible for
realizing the same high-level concern

» Some of those components are

responsible for orthogonal concerns

ComponentA E] ComponentB E’
e Example: Linux’s Status Reporting o /4—©—~\& SlassB
e Violates the principle of separation access| Ny ___ClassA__ “>HO— + Comnarp "
of concerns twice . ;
omponent
* Negatively affects d ClassC =
* Reusability T 7 conceme

® Understandability
® Testability
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Extraneous Connector - Description

ComponentA E

ClassA

e Two connectors of different types
are used to link a pair of component >

+ operation()

® Example: Events vs. Procedure Calls

® Example system: Example: Old MIDAS I E i
? recemnve

) send
version \l/

e Benefits of each connector type may <<Connector>>
<<call>> SoftwareEventBus
cancel each other out

e This example negatively impacts
® Understandability

® Reusability Components El a = new ClassA();
. a.operation();
® Adaptability ClassB /
+ operation()
—‘
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