USC Viterbi @

School of Engineering

Cataloging and
Detecting Architectural

CELNUELS

Joshua Garcia, Daniel Popescu, and
Nenad Medvidovic, University of

Southern California

Yuanfang Cai, Drexel University

Motivation — Refactoring Architecture

e Successful systems are maintained over multiple years

e System’s Life-Cycle Properties worsen over time
® Understandability
® Testability
® Extensibility
® Reusability
* Restructuring/Refactoring helps to improve life-cycle properties
® Code Smells

* When and where to refactor a software system’s architecture?

USC 2

Motivation — IRODS - Prescriptive

Client Interface Admin Interface

-
s
@

Source: https://www.irods.org/index.php/Introduction_to iRODS .

Motivation — iRODS

USC

80.N0S8Y 8A108(|0D uoneolddy

Alailosuuon

ouge

Descriptive

T

/iRODS FUSE +—> Unix iCommands

%

» Windows iCommands

=77

File System Drivers

A

ICAT metadata
\ erve | *
/] catalog
I I 1
[A SN
Electromc fieco\ds Al \ Saae Microservices
| > AV AW
T
Propemes ist |z*oser I \ XM Microservices
L1 L 1 —
LR W AN 7
f | Librar fe Library

A\Y

mdw

Server Core

Contribution and Goals

Categorization of Architectural Smells

° Components, Connectors, Interfaces, Data Elements, Concerns
i Separation of Concerns
o Coupling and Cohesion

Novel Architectural Recovery Technique
o Identification of Elements

g Concern Meta-Classification

Novel Architecture Representation
o Extended Augmented Constraint Network

° Design Structure Matrix

Architectural Smell Detection

USC 5

Connector Envy - Example

StrategyAnalyzerAgent g OanalyzeStrategy
’l
’
<<Slatevanablosos StrategyAnalyzerimpl J’
- requestBuffer . f_--—ar—c getRules
- localRules <77 | » anayzeStiategy
o - broadcastEven .
regions N—(isstrategyValid

e Component exhibiting interaction-related functionality that
should be delegated to connector

® Reusability, understandability, testability

e StrategyAnalyzerAgent from Emergency Response System

USC ;

Architectural Recovery for Smells

e Component identification
® Hierarchical clustering

® Concerns through topic modeling

® SAA - “strategy,” “rule,” “region”
e Connector identification
® Pattern matching, Supervised Learning
* Interface and Data Element Identification

e Concern Meta-classification

® Application-specific or connector-oriented concern

USC :

Novel Architecture Representation

 Extended Augmented Constraint Network

® Uniform, formal way of capturing of architectural

decisions

® Constraint network, design rule, cluster set,

concerns from topic models

USC

Design Structure Matrix of ERS

1 Personnel Resources
2 Ul elements
3 Event and Message Management
4 Agent Rendering
5 Prism Architecture Object Management
6 Weather
7 Commander and Agents
8 Shared Data Structure Elements
9 Usage of Shared Data Structures
10 Main Ul Frame
11 Datalnterface
12 Componentinterface
13 Connectorinterface
14 Component_Renderingfgent
15 Component_SimulationAgent
16 Component_ResourceManager
17 Component_SAKBUI
16 Component_StrategyAnalyzer
19 Component_DeploymentAdvisor
20 Component_Resourcelonitor
21 Component_map
22 Component_Repository
23 Component_\Weather
24 Component_\WeatherAnalyzer
25 Component_StrategyAnalysiskB
26 Component_Clock
27 Commander

USC

1] 2 3 4 & B 71 8 9 10 1112 13 14 156 16 17 18 19 20 21 22 23 24 25 26 27
1
2
£
" Concerns
g
6
7
"
€]
"0
11 X
x [12(x
13
0.56 0.24 019]x x 14
0.36 0.41 0.09 0.06 0.08 X X 15 x|
0.48 0.47 X X 16
0.31 0.19 0.29 0.21 X X 17
0.33 0.17 0.31 0.19 x x Bl 18
0.14 0.32 X X 19
0.49 0.13 0.23 0.14 x x Bl 20
0.43 0.07 0.10 x X 2
0.30 017 0.06 x X 22
0.30 0.20 0.19 x % Components 23
0.27 0.23 x X 24
0.54 0.33 0.13 x % 25
0.20 0.25 0.30 x X 26
0.49 1.00 ¥ X a o a [o |x o x o x [x [x |x |x |7

Thank You

* Thank You

Smells of Different Granularities

e Code smell Architectural smell

® (Code smells are implementation ® A commonly used architectural decision
structures that negatively affect that negatively impacts lifecycle properties
system lifecycle properties

Possible Causes

* Defined in terms of implementation-level * Applying a design solution in an
constructs inappropriate context
® Classes ® Mixing design fragments that have
® Methods undesirable emergent behaviors

® Statements Architectural Refactoring — The remedy

* Examples ® Altering the internal structure of the system
® lLong parameter list ® Altering the behaviors of internal system
® large methods elements

« Code smells do not necessarily address ® Avoid changing external system behavior

architectural decisions

USC .

Ambiguous Interfaces — Description

e An Ambiguous Interface offers only one
public interface

e Internally dispatches to multiple services

e Appears especially in event-based
publish-subscribe systems ComponentA 2 | Q) process

* Example: IMS Publicinterface L/

e User has to inspect the component’s

+ process(GeneralType P) F’Tf" C: ss(G?r_leralType PX
. .] \ I ('type - TypeA) {"'}
implementation before knowing about | if (Ptype == TypeB) {..}

its offered services

e Negatively affects
®* Analyzability
® Understandability

USC ?

Connector Envy — Description

« Connector roles

® Communication
® Coordination
® Conversion

® Facilitation

e Components with Connector Envy
encompass extensive interaction-related
functionality

e Example: Gridfarm Filesystem Daemon
¢ Violates separation of concerns
¢ Negatively affects

® Reusability

® Understandability

®* Testability

USC

ComponentA

2]

—1

<<import=>

Communication
Library

—O ProcessinglnterfaceA

—O ProcessinglnterfaceB

O,

ComponentB

=

CoreClassB

Publiclnterface

+ processCoreConcern

+ process(Type P)

}

(ConcernType P) - convert(Type P) ,k ‘j

process(Type P)X B

b = new CoreClassB();

b. processCoreConcern

(convert(P));

0 prces

13

Scattered Functionality — Description

e Multiple components are responsible for
realizing the same high-level concern

» Some of those components are

responsible for orthogonal concerns

ComponentA E] ComponentB E’
e Example: Linux’s Status Reporting o /4—©—~\& SlassB
e Violates the principle of separation access| Ny ___ClassA__ “>HO— + Comnarp "
of concerns twice . ;
omponent
* Negatively affects d ClassC =
* Reusability T 7 conceme

® Understandability
® Testability

USC

14

Extraneous Connector - Description

ComponentA E

ClassA

e Two connectors of different types
are used to link a pair of component >

+ operation()

® Example: Events vs. Procedure Calls

® Example system: Example: Old MIDAS I E i
? recemnve

) send
version \l/

e Benefits of each connector type may <<Connector>>
<<call>> SoftwareEventBus
cancel each other out

e This example negatively impacts
® Understandability

® Reusability Components El a = new ClassA();
. a.operation();
® Adaptability ClassB /
+ operation()
—‘

USC 5

