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Why Reuse?

» Definition of software reuse: Check Wikipedia

 Let’s focus on extant code reuse - extending
software from an existing system

So why?

» “Cheaper” - leverage investment

» “Quicker” - not starting from scratch

» Ease adoption by user community (maintains
known business model and operational
concepts)

» Large, complex and esoteric implementation
with a proven track record... why not?
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Technology Magic

» Any sufficiently advanced technology is
indistinguishable from magic.
» Arthur C. Clarke, "Profiles of The Future”,
1961 (Clarke's third law)

» SOA - “Let’s wrap it!”, seamless integration
of legacy systems...

» OOP - encapsulation, inheritance,
composition, reusable objects...

» ODBC, JDBC, JCA...
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Feasibility Study

» Spend time and money before you waste time and
money

* Analyze the reuse architecture/design thoroughly in
the context of the new product requirements

* Prototype concepts of how the code will be
incorporated into the new product, how the code will
be extended to meet new requirements

* Ask the questions: “Does this reuse impose design
limitations | can (can’t) live with?”, or rather, “How do |
reuse this code without imposing painful design
limitations?”

* Consider testability, extensibility and maintainability

* Set threshold for code refactoring i.e. what

a

percentage of the existing code base is going to
change?
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“Real World”

» Many large legacy systems are often built
over time and tend to evolve rather than
follow a deliberate design process

» Prototypes and engineering software

become commercial/operational

» Sometimes the best technical ap
not considered the best approac
are other factors that influence t
to reuse
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e.g. cost, schedule and community buy-in
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The Good, The Bad & The Ugly

©*The Good

* Modular, loose coupling, well documented
(code comments & design artifacts), obvious
and logical design patterns, highly testable,
solid data model, easily extensible, etc.

<*The Bad
* Opposite of The Good
@The Ugly
* Good enough to attempt but there will be
pain i.e. deal with the hand you’re dealt
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For Example...

» Progenitor
*Single User, 1 Tier, File-based DB, Legacy
Proprietary Development Libraries
» Reuse 1
*Single User, 2 Tier, Enterprise DB, Legacy
Proprietary Development Libraries
» Reuse 2

* Multi User, 3+ Tier, Service Oriented,
Enterprise DB, Legacy Proprietary
Development Libraries
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Reuse 1
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Reuse 2

(service consumers)

Client Tier

Business Tier
(web services)

Data Tier
(database servers)

Tight coupling of Ul, Business Logic, and DB
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Final Thoughts

» Sometimes the best technical approach is
not considered the best approach

» A feasibility study is a good idea

» Ask the question: “How do | reuse this code
without imposing painful design limitations,
both now and in the future?”

» Make extensibility, testability and
maintainability a major part of your reuse
strategy
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