Reuse: Dealing With The Hand You’re Dealt

Jonathan Haulund
Chief Software Engineer
AEHF Program Office
United States Air Force




Why Reuse?

» Definition of software reuse: Check Wikipedia

 Let’s focus on extant code reuse - extending
software from an existing system

So why?

» “Cheaper” - leverage investment

» “Quicker” - not starting from scratch

» Ease adoption by user community (maintains
known business model and operational
concepts)

» Large, complex and esoteric implementation
with a proven track record... why not?

Reuse: Dealing With The Hand You’re Dealt



Technology Magic

» Any sufficiently advanced technology is
indistinguishable from magic.
» Arthur C. Clarke, "Profiles of The Future”,
1961 (Clarke's third law)

» SOA - “Let’s wrap it!”, seamless integration
of legacy systems...

» OOP - encapsulation, inheritance,
composition, reusable objects...

» ODBC, JDBC, JCA...

A X _'\__"‘.,_'\"\,;\\ .

Reuse: Dealing With The Hand You’re Dealt



Feasibility Study

» Spend time and money before you waste time and
money

* Analyze the reuse architecture/design thoroughly in
the context of the new product requirements

* Prototype concepts of how the code will be
incorporated into the new product, how the code will
be extended to meet new requirements

* Ask the questions: “Does this reuse impose design
limitations | can (can’t) live with?”, or rather, “How do |
reuse this code without imposing painful design
limitations?”

* Consider testability, extensibility and maintainability

* Set threshold for code refactoring i.e. what

a

percentage of the existing code base is going to
change?

Reuse: Dealing With The Hand You’re Dealt



“Real World”

» Many large legacy systems are often built
over time and tend to evolve rather than
follow a deliberate design process

» Prototypes and engineering software

become commercial/operational

» Sometimes the best technical ap
not considered the best approac
are other factors that influence t
to reuse

products

oroach is
n. There

ne decision

e.g. cost, schedule and community buy-in

Reuse: Dealing With The Hand You’'re Dealt



The Good, The Bad & The Ugly

©*The Good

* Modular, loose coupling, well documented
(code comments & design artifacts), obvious
and logical design patterns, highly testable,
solid data model, easily extensible, etc.

<*The Bad
* Opposite of The Good
@The Ugly
* Good enough to attempt but there will be
pain i.e. deal with the hand you’re dealt

Reuse: Dealing With The Hand You’re Dealt



For Example...

» Progenitor
*Single User, 1 Tier, File-based DB, Legacy
Proprietary Development Libraries
» Reuse 1
*Single User, 2 Tier, Enterprise DB, Legacy
Proprietary Development Libraries
» Reuse 2

* Multi User, 3+ Tier, Service Oriented,
Enterprise DB, Legacy Proprietary
Development Libraries

Reuse: Dealing With The Hand You’re Dealt



Progenitor

Application
(Ul and Business fie— Fie-Base
Logic) S e
O
©
<
File-Base Q)
DB 2 >S5
(Data) o
c
wn
e
APIs
(Business Logic)

Reuse: Dealing With The Hand You’'re Dealt

i\ |
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n
n

n



Reuse 1

‘/E!! MaChineA !!!!!!!!\. 'g!!!!!Ma-Chine A/B EEEEEEMN
'/'// \’\‘\‘ :,"’//
Single User

Application " n Enterprise DB

(Ul and Business o (Data and Business

APIs
(Business Logic)

(sn pue Adod)

Retains tight coupling of Ul, BL and DB

Reuse: Dealing With The Hand You’'re Dealt

Schemas replace files - reduces refactor, retains single user



Reuse 2

(service consumers)

Client Tier

Business Tier
(web services)

Data Tier
(database servers)

Tight coupling of Ul, Business Logic, and DB

|

]
]

service prowders

- -

(Ul and Business

AApplication

Logic)

(Business Logic)

AAPIs

| Single User |

. m
. -
. -
. 1
- -
et . -
~ T~ - -
s ~m wr
~ [ -
~. . -
m~_ ma
- e m
. Sma
. T
. -~
- - o~
. - <
. - S
- v =
- e
] - ~
. v ~
. m e
- '
———————e
. -t - e
. =
I -
var -
o
- Ve o

ﬂ

achine A /B

B
86

data stores

Reuse: Dealing With The Hand You’re Dealt

e
-
-
.
-
-
Enterprise DB -
KNDarta and Business .
Logic) =
-
-
-
H
-
— -
Scherma 1 L) .
p=1 -
S= =
— -
o =
Schema 2 = -
= -
- -
o -
D -
=2 -
o
P
P
-

Data model only supports single user, will not scale

o



Final Thoughts

» Sometimes the best technical approach is
not considered the best approach

» A feasibility study is a good idea

» Ask the question: “How do | reuse this code
without imposing painful design limitations,
both now and in the future?”

» Make extensibility, testability and
maintainability a major part of your reuse
strategy

Reuse: Dealing With The Hand You’re Dealt 11



