

Prototype Flight Dynamics Ground System Leveraging a Service-Oriented Architecture and Reusable COTS Services

Sara Case¹ Wsam Gazi²

¹Aerospace Engineer, Flight Dynamics Systems Division, a.i. solutions, Inc. ²Systems Engineer, Flight Dynamics Systems Division, a.i. solutions, Inc.

© 2012 by a.i. solutions, Inc. Published by The Aerospace Corporation with permission.

www.ai-solutions.com

301.306.1756

Service Oriented Architectures

- Approach: Each ground system component acts as a service, communicating with other services through a message bus
 - Each service has a single, common interface to the bus, rather than a separate interface for each of the other components
 - Flight dynamics, TT&C, scheduling, etc.
- Result: Modular system architecture
 - Flexibility to incorporate services from multiple vendors
 - Services can be added or removed without having to rebuild surrounding components
 - Rapid system development components can be designed, built,
 and tested without knowing implementation details of other services
 - Reduced effort and cost when adding, removing, or upgrading components over time
 - Services can be shared and reused in other systems

Prototype Flight Dynamics Ground System

- Goal: Develop a prototype flight dynamics ground system to demonstrate a service-oriented architecture with realworld astrodynamic applications
- Framework: GMSEC (Goddard Mission Services Evolution Center)
 - Publish/subscribe capabilities
 - Standardized message formats
 - Middleware for several message bus platforms
- Development Environment: COTS flight dynamics software FreeFlyer®
 - High-fidelity astrodynamics engine
 - Flexibility through scripting language and Extensions SDK
 - Unrestricted integration with any ground system environment

Flight Dynamics Services

- Six services perform real-time flight dynamics analysis for a set of 60 GPS and geosynchronous satellites
 - Each service is a reusable component that communicates through the message bus using standardized data formats
 - Services run simultaneously and autonomously, each performing a different function
- A separate instance of FreeFlyer executes each service
 - Scheduler
 - Tracking Data Simulation
 - Real-Time Orbit Determination
 - Ephemeris Generation
 - Collision Avoidance Screening
 - Maneuver Planning

Data Flow Diagram

Real-Time Orbit Scheduler Collision Avoidance Screening Determination Publishes Start Screens predictive ephemeris against and End directive sample debris catalog At end of each pass, messages Publishes conjunction detection publishes estimated state -SC ID, GS ID messages -Epoch, Position, Velocity Message Bus **Tracking Data Simulation Ephemeris Generation Publishes Simulated Tracking** Propagates state for 1 Data day -SC ID, GS ID, Epoch, Publishes predictive Range, Azimuth, Elevation ephemeris

Scheduling Service

- Keeps track of the simulation epoch
- Identifies the spacecraft and ground station ID to simulate
- Publishes start and end simulation directives through the GMSEC connection

Tracking Data Simulation Service

- Subscribes to start and end tracking directives for GPS and GEO satellites
- No a-priori knowledge of the tracking schedule or the number of satellites or ground stations
 → single or multi-mission support
- Simulates observations of each satellite from the commanded ground station
- Observations are published in the AFSCN SIS 508 1/Sec Status message format

Real-Time Orbit Determination Service

- Uses separate Kalman Filters to estimate state and covariance for each satellite
- Processes each AFSCN 508 observation as it is received
- Updates estimated state for the corresponding satellite in real time
- 2D and 3D visualizations for situational awareness of constellation and ground station State of Health
- At the end of each pass, a solution state is published in CCSDS format

Ephemeris Generation Service

- The estimated state is used to create a 1-day predictive ephemeris in CCSDS format
- Predictive products are generated, including visibility times and lookangles to ground stations
- Such products are used operationally for contact planning

Collision Avoidance Screening Service

- The predictive ephemeris is screened against a sample catalog of 500 objects
- Catalog objects are filtered by apogee/perigee
- Objects within a specified miss distance will trigger a conjunction detection message which includes:
 - Time of closest approach (TCA)
 - Range at TCA
 - Probability of Collision (Pc)

Data Flow Diagram Revisited

Maneuver Planning Service

- Operator requests a screening
- If a conjunction is detected, a risk mitigation maneuver is planned
- Custom GUI displays details
- If operator executes the maneuver, the service publishes the post-maneuver state
 - Generates a new predictive ephemeris
 - Re-screens against the catalog

Observations and Conclusions (1)

- Because of the standardized GMSEC message format and the flexibility of FreeFlyer's scripting environment, individual astrodynamics services were easy to reconfigure
 - Adding messages for conjunction detection near the end of development required minimal effort
 - Desired metrics were already calculated by the COTS tool
 - Message architecture was already in place
 - A single Collision Avoidance Screening and Maneuver Planning service was easily separated into two services
 - No hardcoded dependencies on the number of components in the system or which component publishes particular messages
 - Additional services or space/ground assets could be added in the future

Observations and Conclusions (2)

- This prototype has also been used to demonstrate ease of interoperability with other GMSEC-compliant systems
 - An IRAD effort to create a real-time GMSEC interface in the web browser
 - The SMC/SN Compatible Satellite C2 Prototype coordinated by Aerospace Corporation
- In both cases, the integration effort was minimal, as each system had been configured to communicate using the same GMSEC standards prior to integration

Questions?