Juno Instrument Data Pipeline
Monitoring
a.k.a.
“Where’s My Data?"

Maddalena Jackson
Marla Thornton

Jet Propulsion Laboratory, California Institute of Technology

© 2012 by JPL/Caltech. Published by The Aerospace Corporation with permission.

Overview

Who are we? ﬂ What was the

problem?
What did we need?

(Situational Awareness)

What did we do?
(Monitoring Service)

How did we do it?
(Rapid System Development, Model Based
Systems Engineering)

What did we learn? _
= Recommendations

Salient Features

e Junois a Category 1, Class B mission

e First solar-powered mission to the outer planets

e Fight instrument payload to conduct gravity, magnetic and atmospheric
investigations plus an E/PO camera

e Polar orbiter spacecraft launches in August 2011
— 5year cruise to Jupiter, JOI in July 2016
— 1 year operations, EOM via de-orbit into Jupiter in 2017

e FElliptical 11 day orbit swings below radiation belts to minimize radiation
exposure

e Key Juno partners: SWRI, JPL, ASl, LM-Denver and GSFC

Instruments
GRAVITY SCIENCE & MAGNETOMETERS (ASC, FGM)
Study Jupiter’s deep structure by mapping the planet ’s gravity field & magnetic field

MICROWAVE RADIOMETER (MWR)
Probe Jupiter’s deep atmosphere and measure how much water (and hence oxygen) is there

JEDI, JADE & WAVES
Sample particles, electric fields and radio waves around Jupiter to determine how the magnetic field inside the planet
is connected to the atmosphere and magnetosphere — especially the auroras

UVS & JIRAM
Take images of the atmosphere and auroras, along with the chemical fingerprints of gases there, with ultraviolet & infrared cameras

JUNOCAM
Take spectacular close-up, color images

Background

e (CCSDS File Delivery Protocol (CFDP)
e Push data to Instrument Teams
e Instrument Data Pipeline

— From ground receipt to delivery to Instrument Teams
— Multi-mission Components
— Mission Data Delivery Latency Requirements

e Testing revealed:

— Mission Data Delivery Latency Requirements not met

Instrument Data Pipeline (Logical)

| Productse‘ | Productse‘

Problem

* Great until theW
— No visibility W

Why isn’t it there?

— Different results! (Testbeds) When was it supposed to be there?
— |Is this going to happen again?
— How do | know when something’s wrong?

_ Unix etectlves. P
. Giant spreaseets. P
O}

Instrument Data Pipeline (Logical)

. _EmalTorrents. ;
Is there a trend?

Product ﬁproducts Product Products aProduct
Assembler — = = Reposﬂo - - — Distributor
We need to know status in real-time! (Situational Awareness)

Instrument
Data Generator

Situational Awareness

e Need monitoring (eyes) at every point in the pipeline
— Multiple pipelines (testbed vs. ops)
— Analyze performance (throughput, latency)
— Compare products
— Detect problems

Instrument Packets Product Products Product Products
Data Generator — — — Assembler — — — — Repository - = —

I
W Packets
Product
Assembler

Product
Distributor

— Instrument Data Pipeline (Logical)

Data Generator - — — — > Assembler — — — 2 Repository — — — > Distributor

e Let’s automate this and do it before we need it!

e What do need the service to do?

— Function: Collect data

 Modular (one monitor per IDP node)
e Distributed (runs at the node)
e Read-only (no effect on IDP)

— Function: Display data and analysis
e Display by current test, instrument, IDP component
e Remote access (website)
e Automated performance analysis

e Implies...
— Standard agent-web-server interface
— Automation (point is to save time)
— Extensible (transition from ATLO to Operations)
— Test-Like-You-Fly (TLYF)

Monitoring Parameters

What should the software monitor?

— Size, name, arrival time, completion time

— Provides knowledge of location, enables comparison, and
determination of bottlenecks

|Assemb|er Monitor |

;ngzr Data

Assembler
Monitor

Products

Distributor Monitor

\Rerg%ory mr Data
Dat ~ Products ,

-

Eﬂgler Data

Product Assembler

<—»

e il

|Product Assembler

Assembler Monitor

Kﬂgler Data

Instrument Data Pipeline (Logical)

S

Products JProduct Repository troduct Product Distributor|

Repésitory Data

|Repository Monitor | |Distributor Monitor |

Services

AN) | /
Assembler N N | Y 4 Repository
Monitor Monitor
~ Peruct Status D/a‘fa P
~
-~
Distributor =~ ~ AN I / ~ Assembler
Monitor - — _ _ SNV~ = - Monitor
— — > Web Server |é - =
Z =~
s ~
e, >
7<z | Database |

Plug-and-play monitoring “agents”

Standard HTTP interface

Open-source web server / database framework
Register of products in real-time

Accessible to team members from any location
Shows latest location of products and product data
Shows latencies and bottlenecks

Rapid System Development

e Needed functional system ASAP
— Ready to support Juno Thermal-Vacuum Testing

e Rapid development cycle

Requests

Review
e Team:

— Senior Programmer (Developer, Tester)
— Mission Expert (Developer, Tester)
— Mission Personnel (Users & Customers)

Impact of Rapid System Development

e Knowledge Transfer
— Software experience <> Mission experience
e Test-Like-You-Fly
— Constant testing in operations environment
e Quick customer feedback
— lteration, refining needs -> different software design
— Refactoring, re-design induces some overhead

e Agile development
— Final product highly optimized for customer
— Accommodates evolving knowledge of pipeline

— Reverse-engineer some requirements, test cases, and

documentation

* No time for full ‘waterfall’ systems engineering process at each
iteration

Product delivered — what next?

e [nstitution requires capture of:
— Requirements
— Design
— Implementation
— Testing
e 5year cruise — information ‘archive’
— Who will operate it when we get to Jupiter?

e Model-based Systems Engineering (in SysML)
— Standard views
— Supports description/design of those factors
— Visualize dependencies
— Gold-source / centralized SE capture
— Can be used for future design

MIBSE - Process

Requirements - spreadsheet
Captured components
Captured component logical/functional design

— Discovered areas of weakness

— Discovered redundancy

— Discovered inconsistencies
Captured Requirements in Model

— Analyzed discrepancies between requirements and design

— Improved requirements
Captured implementation

— Link to requirements
Captured testing

— Analyze testing completeness Operating Procedures

— Link to requirements Implementation Descriptions

— Link to functions Requirements Documents
Generated Artifacts

Conclusions

Situational Awareness Service Orientation

Tedious by hand Simple (for distributed monitoring)
Easy with software Flexible

Extensible

Robust (modular)

MBSE

Rapid System Development
Standard artifacts

Knowledge Transfer
Central gold-source of systems Leverage open-source
engineering frameworks and libraries
Reveals weaknesses TLYF

Analysis of Systems

Engineering dependencies

Recommendations

Situational Awareness

— Analyze current (tedious) processes = Define metrics
Service Orientation

— Standardize external interfaces (with GDS systems)

Rapid System Development

— Clear roles/expertise

— Codify development/delivery cycle

— Integrate functional design

— Document all feature/functionality requests

— Invest time in documenting use-cases /concept of operations
MBSE

— Involve earlier in the process (functional)

— Capture requirements and rationale in real-time

— Keep an up-to-date capability / function / subsystem mapping

— Document range of TLYF events as test cases

— Create/maintain procedures in real-time

Backup Slides

“Solution”

e How do we do it by hand?

— Unix Detectives
e Can we find the last known location of the file?

— Call people if we don’t have access to parts of the pipeline
* Did you see this product go through?

— Write things in a notebook
* Product ID, arrival time, file size, build time, etc.

— Email (add to the torrent)
e Here’s a report of the problem, file it away somewhere!

— Get vague impressions over time
e | think it gets slower when this instrument is turned on... hmm!

— TEDIUM

e Put things in a giant spreadsheet and try to find a trend?
* Repeat the time-consuming process

