# The On-Demand, Information-Driven Satellite Control Network

Bruno J. Calanche

Ground System Architecture Workshop 2014



## Why On Demand and Info Driven?

- Responsive Automated Services to smaller missions<sup>1</sup>
- Flexible services<sup>1</sup>
- Demand access based on event event-driven demand
- Enables missions to rapidly re-point instruments for observation of cosmic and earth-based events<sup>1</sup>
- Supports SV 911 initiative
- Supports availability, continuity of ops and mission assurance



# Aspects and Capabilities for On Demand

- Global coverage
- Multiple contact/multiple access
- Supports all aspects of TT&C
- Supports all users LEOs, MEOs, HEOs
- Supports all mission phases: launch, early orbit, anomaly resolution and on-station
- Guarantees availability of resources
- Mission assurance -- all mission phases



## Aspects and Capabilities of On Demand

- Based on service-oriented architecture (SOA)
- Provides tiered views for monitoring, service execution, FDFI, performance and condition monitoring — app based
- Provides multiple tracking –all mission phases
- BEM –reduce contact time
- Exploits satellite house keeping



 Directive driven—match contact type/support to satellite activity blocks (SABs)



Supports SV 911 initiative



# Aspects/Capabilities of Information Driven\*

- Tiered view of system
  - Network
  - Site
  - Functionality/thread
  - Subsystem /LRU
  - LRU/book/panel
- Provides of view environment
  - Threats/situation awareness
- Provides analytics



<sup>\*</sup>Supports continuity of ops, availability, mission assurance

# Information/Knowledge

- Health— overall, to LRUs (DSPs), subsystems books, includes currents, temps (standard, mean)
- Performance—during support/contacts
  - Includes all TT&C (ranging, Doppler, TLM, etc.)
- Configuration and status —upon change
- Self test off-line and online
- Situational awareness
- Analytics
- Trending/comparative analysis/recognition
- Across networks (if interoperable)



## Present architectures –TDRSS n AFSCN



| Present       |             |              |
|---------------|-------------|--------------|
| Capabilities  | AFSCN       | TDRSS        |
|               |             | CDMA/        |
| Multiple      | 12070       | Spread       |
| Access        | FDM         | Spectrum     |
| Multiple      |             |              |
| Contact       | No          | MA/BFN       |
| SOA           | ESD         | SGSS         |
| Tiered        |             |              |
| Architecture  | RBC         | NO           |
|               | RBC not     |              |
| CBM+          | Deployed    | No           |
| Accountabilit | Limited by  |              |
| У             | interface   | Not Tracking |
| Global        | No-         | Yes -for SV  |
| Coverage      | Terrestrial | above        |
| Information   |             |              |
| Driven        | No          | No           |
| SOA           |             |              |
| Scheduling &  |             |              |
| Planning      | Yes         | Yes          |
| Multiple      |             |              |
| Contact       |             |              |
| Tracking      | No          | No           |
| Арр           |             |              |
| Capability    | RBC         | No           |
| On Demand     |             |              |
| Access        | No          | DAS          |





## Present architectures (summary)

- Terrestrial systems SA parabolic dishes
- Prior user scheduling and network coordination—works for fewer larger SV
- Not bandwidth efficient modulation (BEM) or spectrally efficient
- Maintenance is reactive or corrective
- Data intensive archive everything
- Tracl
  - Tracking –not low signal; Σ to Δ



# Building Towards On-Demand

| SEGMENT ALLOCATION | CAPABILITY              | ARCHITECTURE                              |
|--------------------|-------------------------|-------------------------------------------|
|                    | Coverage                | Site location /SV spatial range           |
|                    | Directivity             | Site/SV knowledge                         |
|                    | Multiple contact        | Antenna type n number of antenna          |
| LINK               | Spectrum                | Based on allocation                       |
|                    | Segmentation            | Based on allocation                       |
|                    | Spectrum access         | Multiplexing (FDM, CDMA, TDMA)            |
|                    | Contact duration        | Modulation - BEM/SV house keeping         |
|                    | Tracking-all phases     | Low signal tracking                       |
|                    | EIRP- all phases        | Antenna design/type                       |
|                    | Availability of service | FDFI, CBM+ , app design                   |
|                    | Capacity design         | # Of mission(s)/mission types requirement |

# Building Toward On-Demand

|              | SCHEDULING              | SOA/KNOWLEDGE/AUTOMATED/GUI/APP         |
|--------------|-------------------------|-----------------------------------------|
| Network Cntl | Availability of network | FDFI, CBM+                              |
|              | Flexible/event driven   | Directive driven via MOC                |
|              | Cross-network           | Interoperability                        |
|              | 911 event-driven        | SV based directivepreamble/routing info |
|              | Analytics               | Trendingusage/ types                    |

|         | CONTACT DURATION | SV HOUSEKEEPING / MISSION PHASE/BEM         |
|---------|------------------|---------------------------------------------|
| SV/User | Directive-based  | SABsfor MVRS, OBC, TLM, science/<br>mission |
|         | 911 event-driven | Preamble Site/MOC directives                |



#### TDRSS DAS and AFSN GDPAA insertion\*



Figure 1: NASA Space Network and DAS



The Geodesic Dome Phased-Array Antenna Advanced Technology Demonstration proved the antenna's capacity to provide multiple, simultaneous, dual-band (L-band and S-band) contacts for telemetry, tracking, and command of Air Force Satellite Control Network satellites.

\*A good start if exploited or implemented



#### Architectural Drivers

- Coverage— SV in view
- Tracking user/SV position location (ephemeris); low signal level
- Multiple contact antenna phased arrayed systems
- Multiple access waveforms
- Coordination alleviation (automation)
- SV 911 initiative
  - Directive driven based on SABS/contact type
  - Info based, CBM+, tiered FDFI



## Types of Maintenance Programs

Two types of maintenance:

- 1. Reactive or corrective maintenance
- 2. Preventive maintenance

Preventive maintenance is divided into:

- Planned maintenance
- Condition-based or predictive maintenance



#### Summary

- Exploit SABs, SV housekeeping
- Reduce contact time (BEM, spectral efficiency)
- Increase capacity (multiple contact/multiple access)
- Develop low signal detect tracking (find/detect SV 911 call)
- Develop MA/BFN scanning to detect 911 call
- Develop tiered views for FDFI and CBM+
- Provide trending/analysis and analytics (cloud)
- Store information not data (cloud)
- Recognize dedicated demand missions



# Info Driven/Tiered Architecture -FDFI/ CBM+/Apps

Bruno Calanche

Back up charts



# AFSCN (Top Tier) -- All Green



#### First Tier at Site – FDFI Summary Performance



#### Second Tier FDFI – LRU







# 2nd Tier HPA Subsystem – RF Combining





# Book Temperatures vs Total Output Power





#### Internal Book Currents vs Total Power





# G/T types of Information

#### RTS types of information (data)

- FDFI information
- Performance data- real-time data during SV contact
- Configuration/status data upon change
- Health preprocessed data
- Long-term trending data processed data at site



#### References

- "THE NASA SPACE NETWORK DEMAND ACCESS SYSTEM (DAS)," Thomas A. Gitlin (NASA GSFC), Walter Kearns & William D. Horne (ITT Industries), Space Ops, 2002
- "Inserting the GDPAA into the AFSCN," Unpublished Aerospace TOR, Bruno J. Calanche, December 2004
- "Advanced Ephemeris Update Receiver" Air Force SBIR, Bruno <u>Calanche</u> and Capt . Joe <u>Spagnolia</u>, <u>Vinay Swimanathan</u> 2011
- "RTS Performance Monitoring (RPM) Guidance for Prototype
  Development," Bruno <u>Calanche</u> ,Capt. Joe <u>Spagnolia</u>, <u>Vinay Swimanathan</u>,
  2010
- 5) "Condition Monitoring of a High-Power Amplifier Subsystem based on RF Combining using a Built in Self-Test and Performance Templates," Bruno Calanche, unpublished technical memo, Feb. 18, 2012—possible submission to IEEE



