

GOES-R Ground System Architecture for Product Generation

Farida Adimi, Ph.D. Satya Kalluri Ph.D.

GOES-R Ground Segment Project NASA Goddard Space Flight Center Greenbelt, MD 20771

Farida.Adimi@nasa.gov

http://www.goes-r.gov/

Allan Weiner, Ph.D. Brian Haman

HARRIS Corporation, GCSD Melbourne, Fl 32902 <u>aweiner@harris.com</u>

© 2014 by GOES-R Ground Segment Project. Published by The Aerospace Corporation with permission

GOES-R Operational System Configuration

Transition from GVAR to GRB

	GVAR (GOES VARiable Format)	GOES Rebroadcast (GRB)
Full Disk Image	30 Minutes	5 Minutes (Mode 4) 15 min (Mode 3)
Other Modes	Rapid Scan, Super Rapid Scan	3000 km X 5000 km (CONUS: 5 minute) 1000 km X 1000 km (Mesoscale: 30 secononds)
Polarization	None	Dual Circular Polarized
Receiver Center Frequency	1685.7 MHz (L-Band)	1686.6 MHz (L-Band)
Data Rate	2.11 Mbps	31 Mbps
Antenna Coverage	Earth Coverage to 5 ^o	Earth Coverage to 5 ^o
Data Sources	Imager and Sounder	ABI (16 bands), GLM, SEISS, EXIS, SUVI, MAG
Space Weather	None	~2 Mbps
Lightning Data	None	0.5 Mbps

GOES-R GRB Simulator

 GRB simulator enables users to test GOES-R data broadcasts, it simulates the generation of Consultative Committee for Space Data Systems (CCSDS) formatted GRB output Level 1b data from five GOES-R Instruments (ABI, SUVI, EXIS, SEISS, and MAG) and also simulates Level 2 data packets from GLM

 The GRB Simulator simulates GRB outputs based on image and non image test patterns in addition to GOES-R proxy data


 Weather organizations and manufacturers can test receivers in advance to ensure smooth transition from current GVAR to GRB.

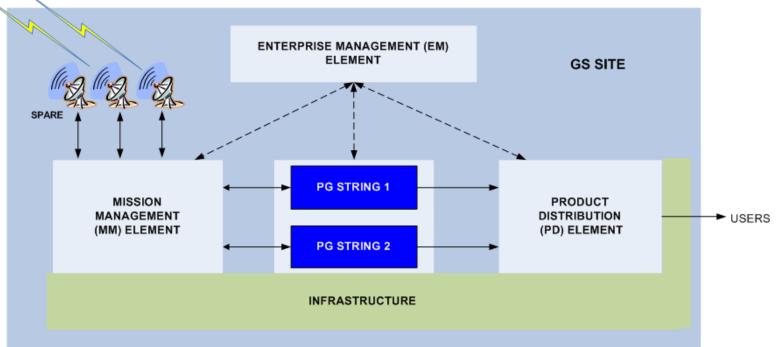
New Antennas Are Being Built to Receive Increased Volume of Data From GOES-R

Raw Data Downlink at WCDAS and RBU is 72Mbps

WCDAS

GSAW 2014

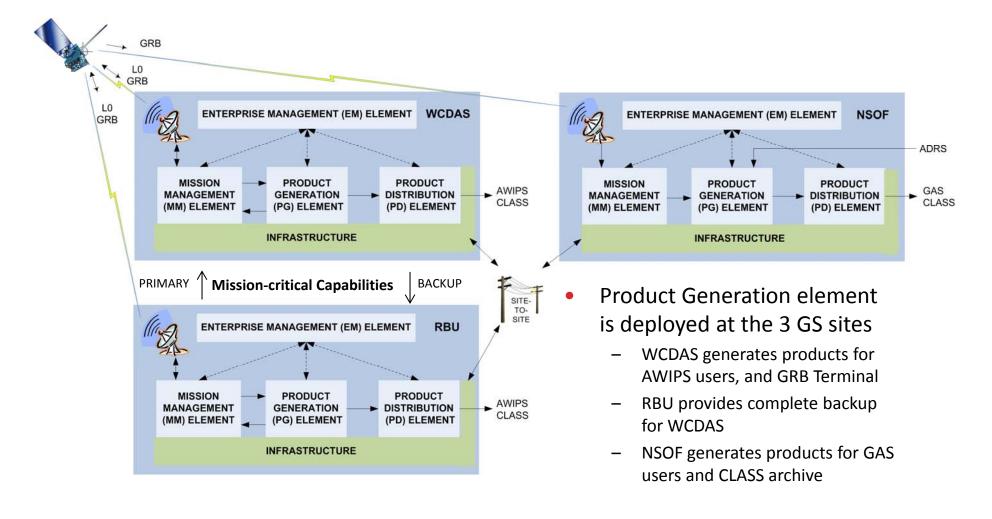
Non Export-Controlled Information



GS Simplified Architecture PG Supports 2 GOES Satellites

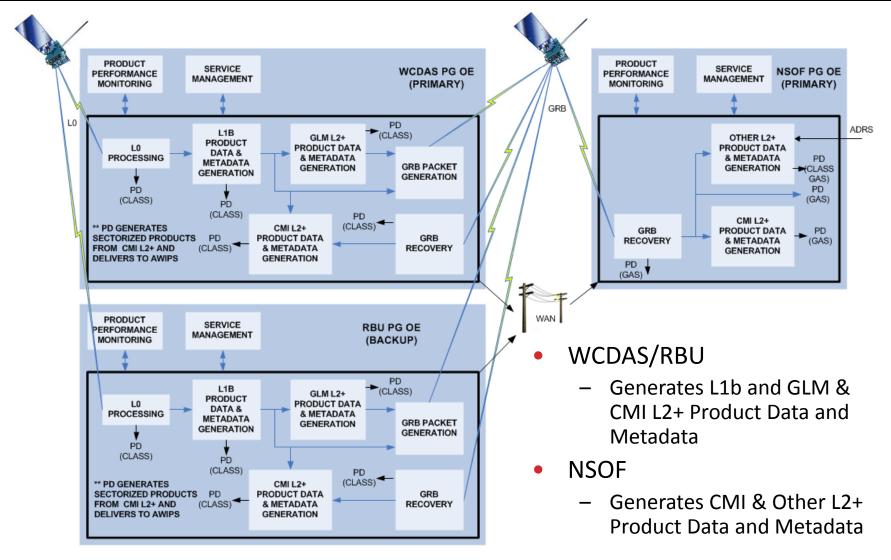
GOES EAST

GOES WES



- PG has 2 Operational "strings" to support two satellites; each string has built-in redundancy
 - Together, the 2 strings can generate products for GOES-East and GOES-West
- PG ITE strings can be reconfigured to make a 3rd PG operational string
 - This PG capability has been demonstrated in the lab
- PG "strings" are autonomous instances of the PG architecture
 - One PG string has no dependencies on another PG string
 - Autonomy simplifies mixed-mode support and tech refreshes many advantages

GS Simplified Architecture PG's 2 Primary and 1 Backup Site



GS Simplified Architecture PG Element-level Design

GOES-R Products

GOES-R PRODUCTS

Advanced Baseline Imager (ABI)

Aerosol Detection (Including Smoke and Dust)

Aerosol Optical Depth (AOD)

Clear Sky Masks

Cloud and Moisture Imagery (KPP)

Cloud Optical Depth

Cloud Particle Size Distribution

Cloud Top Height

Cloud Top Phase

Cloud Top Pressure

Cloud Top Temperature

Derived Motion Winds

Derived Stability Indices

Downward Shortwave Radiation: Surface

Fire/Hot Spot Characterization

Hurricane Intensity Estimation

Land Surface Temperature (Skin)

Legacy Vertical Moisture Profile

Legacy Vertical Temperature Profile

Radiances

Rainfall Rate/QPE

Reflected Shortwave Radiation: TOA

Sea Surface Temperature (Skin)

Snow Cover

Total Precipitable Water

Volcanic Ash: Detection and Height

Geostationary Lightning Mapper (GLM)

Lightning Detection: Events, Groups & Flashes

Space Environment In-Situ Suite (SEISS)

Energetic Heavy Ions

Magnetospheric Electrons & Protons: Low Energy

Magnetospheric Electrons: Med & High Energy

Magnetospheric Protons: Med & High Energy

Solar and Galactic Protons

Magnetometer (MAG)

Geomagnetic Field

Extreme Ultraviolet and X-ray Irradiance Suite (EXIS)

Solar Flux: EUV

Solar Flux: X-ray Irradiance

Solar Ultraviolet Imager (SUVI)

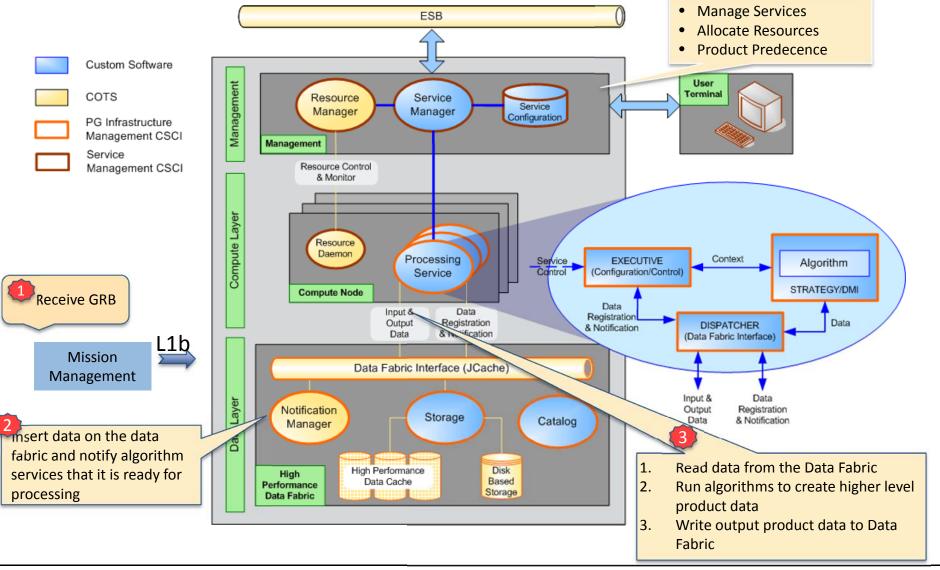
Solar Imagery (X-ray): coronal holes, solar flares,

coronal mass ejection source regions

GOES-R Ground Segment Product Generation (PG) Design System Drivers

- The GOES-R PG System has requirements to:
 - Produce L1b and L2+ Products at low latency operationally in real time
 - Cloud and Moisture Imagery (KPPs): CONUS and Full Disk –
 50 seconds; Mesoscale 23 seconds
 - Be modular/plug-and-play: accommodate individual algorithm changes, deletion of existing and the addition of new algorithms, without the need for recompilation of other software modules.
 - Be Scalable and Expandable
 - Maintain a minimum Operational availability of 0.9999, averaged over a 30-day period, for those functions associated with the distribution of End Products

PG Design Features



- The PG design is based on Service Based Architecture (SBA)
 - Each algorithms works as a service
 - Receives lower level data (e.g. L1b radiances) and creates higher level products (e.g. Imagery)
 - Data is moved among algorithms (services) through a high performance data cache called the Data Fabric
 - A Service Manager orchestrates and manages the services
 - Messages are sent across services using an Enterprise Service Bus (ESB)

SBA Architecture Diagram at NSOF

Algorithm Development Overview

- Development of Algorithms divided into two phases
 - Science Phase Implementation of L1/L2 Algorithm and Algorithm Specific Interfaces
 - Develop Science Software
 - Operationalization Phase Integration of Science
 Algorithm into PG Infrastructure
 - Optimize the Science Software to run faster to meet Latency

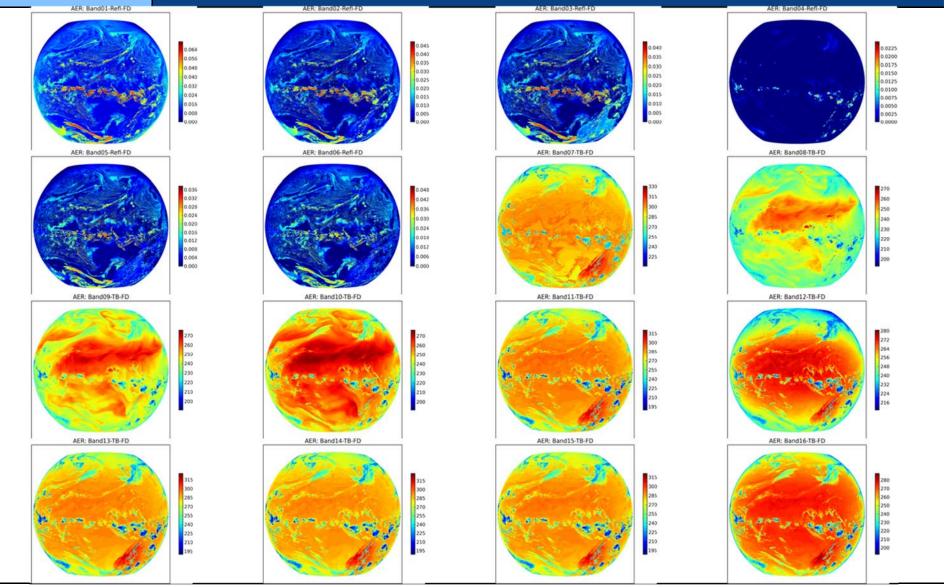
Science Software Development Overview

- Science Phase of Development Includes:
 - Implementation of Algorithm Design as defined in ATBDs
 - Implementation of interfaces to specific to Algorithm; i.e. ancillary data, product precedence
 - Responsible for producing:
 - Block Level Products for Images
 - Binary Products for non-imagery
 - Intermediary Products
 - Data Quality Flags
 - Metadata
 - Tested to meet:
 - Science Functional Requirements
 - Reproducibility of test outputs to verify accurate implementation
 - Handed off to Operationalization Team

Operationalization Overview

- Operationalization (OPZ) Phase of Development Includes:
 - Integration and configuration of science Algorithm into SBA Architecture
 - Configuring Services to meet Latency Requirements
 - Ingesting Semi-Static Data/Processing Parameters into the Data Fabric for use by Algorithms
 - Additional logging to gather performance metrics
 - Responsible for Producing Product Level Metadata
 - Consolidated Metadata generated at the block level
 - Used by Product Distribution to signify the full product is available
 - Tested on Operational Infrastructure to meet
 - Science and Reproducibility Requirements
 - Performance and Non-Functional Requirements

PG Implementation Status



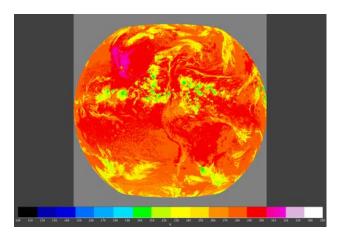
- Science & Operationalization phase for all ABI LO/L1b algorithms completed
 - Decompression of ABI LO packets
 - Decommutation of ABI data fields
 - Calibration
 - Navigation and Resampling
- Science & Operationalization phase for all space weather L0/L1b algorithms completed
- Science & Operationalization phase for ABI L2+ products for Product Set 1 completed: Imagery (KPPs), Clouds, Aerosols, Soundings
- Integration of Product Generation & Product Distribution is completed for ABI L1b (Radiances) and L2+ for product set 1 (Imagery, Clouds, Aerosols, and Soundings).
- Integration of Mission Management, Product Generation and Product Distribution to be completed by mid 2014

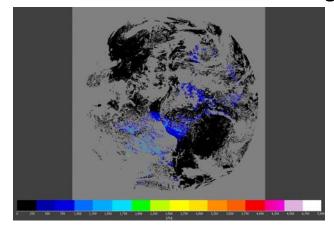
Science Phase Test Result: Full Disk ABI 16 Band Outputs From Simulated Data

Reproducing Science in to an Operational System is a Key Requirement!!

AWG Reference Harris OPZ **AER Science Expected Result** Algorithm Result Service Result CMI Band 2 – Full Disk CMI Band 16 - Full Disk AWG-Harris R2=1.00000000

Results from PG-PD Integration


Reflectance


Cloud Mask

Brightness Temperature

Convective Available Potential Energy

Lots of Data Processing, Need a Lot of High Performance Computing!!!!

- High throughput (106 Mbps for each satellite)
 - Direct Readout 31Mbps
 - L1b Products 480 GB / day
 - L2+ Products 1.37 TB / day
- Low latency
 - < 1min for KPP</p>
 - < 5 min for most products</p>
- High availability
 - Planned Outage < 3 hrs/year</p>
- Enterprise Class Data Center
 - 2 primary and one backup site
 - >200 servers with >2000 cores
 - ~20TFLOPS of processing capacity

Summary

- Latency, Latency, Latency
- Flexibility, Scalability, Expandability, and Availability
- Robustness with automated failover
- Design addresses major architecture challenges
 - Continuous data stream
 - Data error handling
 - Interdependence of data and product streams
 - Resolves finite limitations of available computers and software
 - Capable of resolving obsolescence from evolving COTS computer hardware and software products
- Early result indicates that the design is meeting or exceeding performance specification.