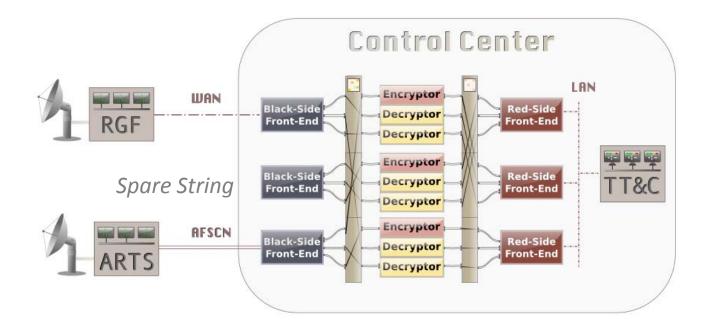


Architectural Impacts And Net-Centric Opportunities Using Network-Based Crypto Devices

Rob Andzik AMERGINT Technologies GSAW 2010

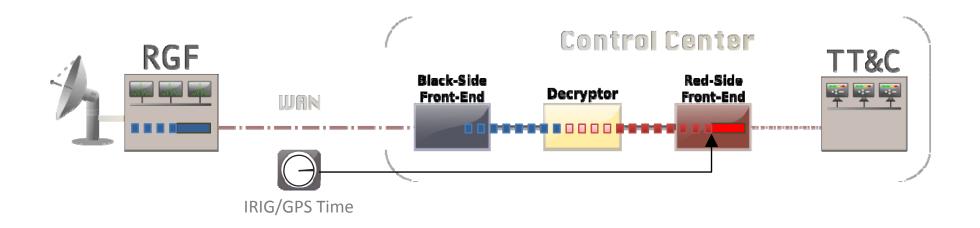
YOUR INNOVATIVE ADVANTAGE



A New Telemetry & Command Crypto: KS-252

- How will this impact ground system architectures?
- What benefits might we realize?
- Impact Of The Crypto On Current Architectures
- Implementation Opportunities Of The New Crypto
- Other Considerations

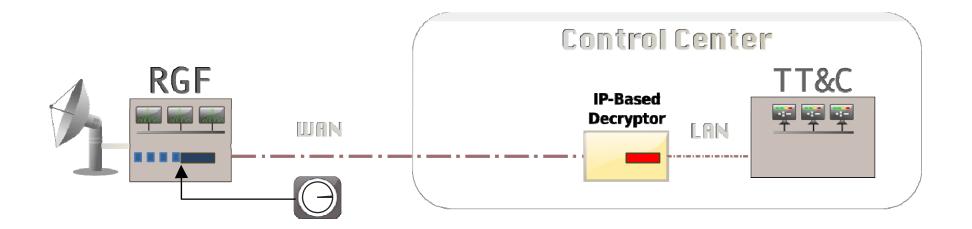
- Control Centers Contain Numerous Cables and Devices
- The Interface With The Crypto Drives Much Of This Complexity
- Cost Impacts
 - Unique Serial Protocols Prevent Use Of Commodity COTS Solutions
 - Complex & Expensive Software, Hardware & Cabling Required
 - Patch Panels & Switches Necessary For High Availability



- Serial Data Transfer Is Inherently Deterministic
 - Often A Requirement For Timestamps & Time-Critical Commanding
 - Timestamps & Time-Release Are Handled On The Red-Side

• Combining Packet & Serial Communication Is Challenging

- Deterministic Timing Requires Added Latency At Several Points
 - Serial-To-Packet: Must Accumulate A Full Packet Before Transfer
 - Packet-To-Serial: Buffering Reduces Under Flows
- Non-Deterministic Packet Transfers Impact Timestamps



- What Happens If We Switch To A Packet-Based Crypto?
 - Can We Remove The Complex Nest Of Cables And Devices?
 - Will The New Crypto Impact My CONOPS?
 - What Risks And Challenges Will My Program Face?
- Enter The KS-252
 - IP-Based Transfer Of Telemetry & Command Data
 - Support For Multiple Algorithms In A Single, One Rack Unit (1U) Box
 - Supports Both Encrypt/Decrypt and Web-Based Control & Status
- How Can We Take Advantage Of This?
 - Potential For Significant Cost Savings!
 - The Crypto Itself Is Less Than 50% The Cost
 - Dramatic Reduction In Cabling & Hardware Complexity
 - Sparing & Pooling Become Practical And Cost Effective
 - Potential For A Net-Centric Ground System Architecture
 - Network-based Switching & Routing
 - Eliminates Much Of The Need For Specialized Hardware
 - The Crypto Could Become A 'Service On The Network'

- IP-Based Crypto Dramatically Simplifies The Architecture
 - All Interfaces Are Ethernet
 - Actual Data Rate Only Impacts Latency At The RGF
 - <u>Ideally</u> We Would Have:
 - The Modem (Or Space Vehicle) Apply Timestamps To The Packets
 - Timestamps Travel With The Packets Through The Crypto
 - No Need For Custom Front-End Hardware
 - Frame Synchronization & Command Processing Move To Software

- TLM/CMD Requirements Allocated To Front-Ends Still Exist
 - Synchronization, Barker Codes, Command Spacing, etc.
 - The KS-252 Does Not Pass Timestamps Through With The Packets
- We Must Also Consider The Impact Of The Network
 - WAN Jitter Can Vary Packet Delivery Time By Seconds
 - The New Crypto Uses Raw UDP Packets For Data Transfer
 - The AFSCN Is NOT (Yet) Net-Centric
- As A Result
 - Some Red/Black Front-End Capabilities Are Still Required
 - Red-Side Timestamps Are Difficult To Calculate Accurately

Modernized Hardware Architecture

• With The KS-252 The Hardware Architecture Changes

- 1U Form Factor Crypto
- Standard Network Switching & Cables
- Each KS-252 Can Perform Either Encrypt Or Decrypt
- Improves Device Pooling, Switching Etc
- Front-End Systems Can Become Software Applications Or Libraries
 - NOTE: AFSCN Connectivity Still Requires Specialized Hardware

- Some Might Consider 'Wrapping' The KS-252 With Serial
 - Allows For Reuse Of Expensive Front-End Equipment
 - In Reality This Adds Unnecessary Complexity
 - IP-To-Serial Conversion Is Tricky
 - Adds Additional Systems: Switches, Hardware, Software etc.
- Others Will Embrace The Net-Centric Possibilities
 - Requires Hardware / Software / CONOPS Modifications
- Timestamps Must Be Solved For Existing Satellite Programs
 - No Small Task, But Solutions Already Exist
- Consider Opportunities For Improvement
 - Virtualization & Platform Independence
 - Sparing & Pooling Of Resources
 - Complete Software-Based Solutions
 - High Performance Software-Based Front-Ends Exist Today

KS-252 Testing Conducted To Date

Packets To/From Serial Telemetry Conversion	 ✓
All Telemetry Algorithms	
Automated Telemetry Invert (No Control Needed)	 ✓
Accurate Telemetry Time-Tagging	
Interoperability With Current/Legacy Telemetry Crypto	 ✓
Parallel Telemetry Processing for > 100 Mbps	~
Packets To/From Ternary Command Conversion	 ✓
All Commanding Algorithms	~
Binary/Ternary Commanding	 ✓
Interoperability With Current/Legacy Command Crypto	90%

• ViaSat
Testing Conducted Du

Special Thanks To:

• CPSG

Testing Conducted By:CPSG

• AMERGINT

