GSAW 2010

Migration from a legacy ground system to a state-of-the-art, COTS-based system: Lessons learned from two recent programs

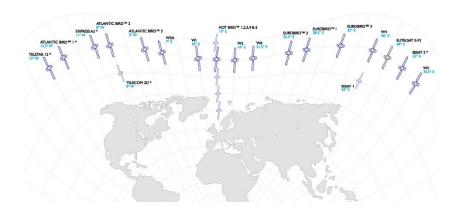
ΒY

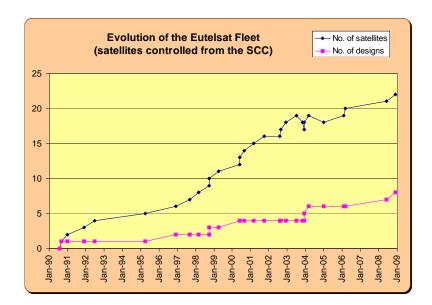
- Gonzalo Garcia: VP of Operations, USA
- Theresa Beech: VP of Business Development, USA
- Alicia Kavelaars: Lead Systems Engineer

© GMV, 2010 Property of GMV All rights reserved

OVERVIEW

- Presentation analyzes the process followed to migrate satellite fleet operations from a legacy system to an innovative state-of-the-art₇ COTS-based system.
- Typical in GEO missions (life ~ 15+ years): obsolescence issues & high operations costs lead to replacement of ground elements or complete subsystems
- Must be carried out minimizing risks and with no impact on operations.
- We will discuss issues and lessons learned using as case studies two recent programs where GMV migrated operations of large fleets of GEOs

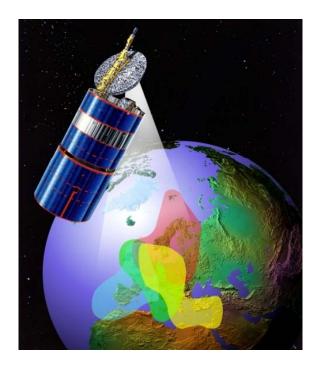




CASE STUDY #1: EUTELSAT FLEET MIGRATION

- EUTELSAT currently has a fleet of 24 geostationary satellites
- 8 different satellite platforms from 6 manufacturers (Thales, Astrium, Boeing, ISRO, Alenia, NPO/PM)
- Migration from legacy system to new system and addition of new satellites performed separately for Flight Dynamics System (FDS) and Real-Time System (RTS)
- Many new satellites added during migration process
- Long process, started in 2002

2010/03/02


Page 3

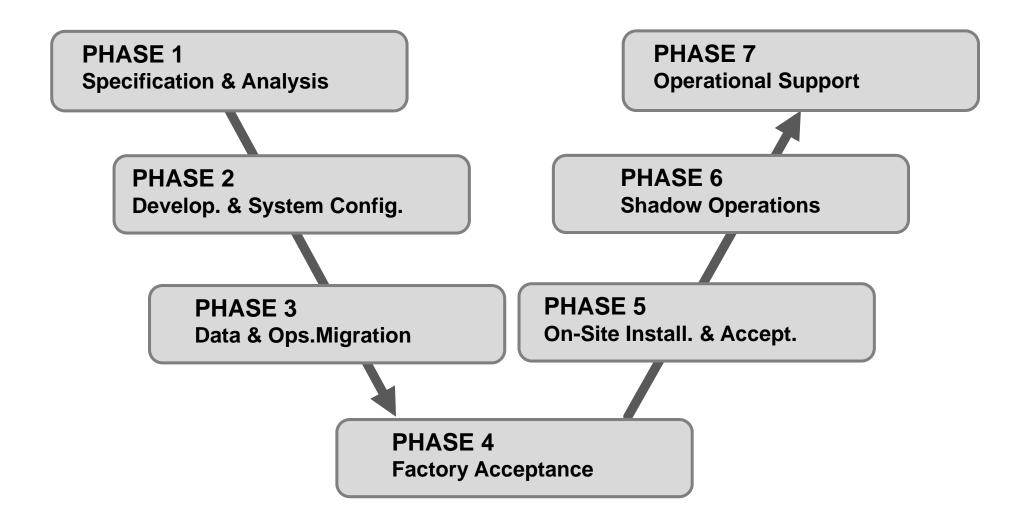
© GMV, 2010

CASE STUDY #2: STAR ONE FLEET MIGRATION

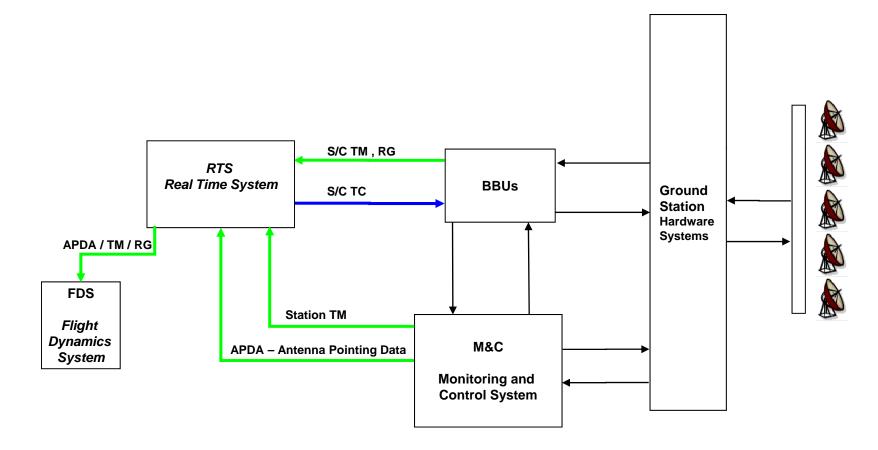
- GMV migrated in 2008-2009 the operations of the ground system of Star One's Brasilsat B series fleet:
 - 4 Boeing BSS-376W satellites operated from 2 sites
 - New state-of-the-art ground system with cost-effective software and hardware components
- GMV provided the RTS and FDS, plus:
 - Ground equipment monitoring & control (M&C)
 - Radiofrequency (RF) equipment
 - Baseband units (BBUs)
- Included migration of operational procedures and addition of long-term telemetry archive

REASONS TO MIGRATE GROUND SYSTEMS

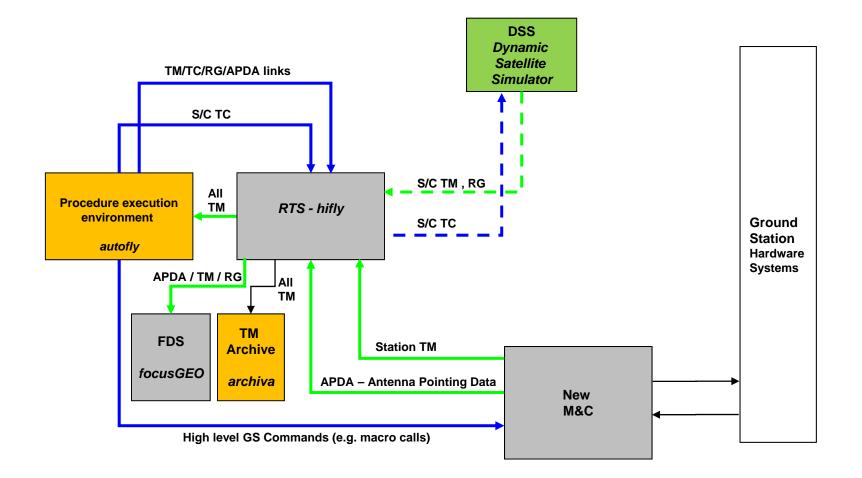
- Hardware or software obsolescence, serious issues with HW (servers, BBUs) and/or SW availability and maintenance (usually selected for the very first satellite of the fleet)
- Need/desire to consolidate operations into a seamless multi-mission system
- Reduce total lifetime operations costs
- Desire to take advantage of modern technology
 - Open architectures
 - Automation
 - Advanced telemetry archiving and broadcasting
 - New HW
- Improve efficiency & reliability of operations
- Safe and efficient collocation station keeping
- ... and many more


A TYPICAL REQUIREMENT IN MIGRATIONS

The new system shall do everything that the legacy system does (faster), plus a lot more



TYPICAL MIGRATION PROGRAM


SYSTEM ARCHITECTURE: LEGACY SYSTEM (FUNCTIONAL, SIMPLIFIED)

SYSTEM ARCHITECTURE: IN FACTORY NEW SYSTEM (FUNCTIONAL, SIMPLIFIED)

Page 9

SYSTEM ARCHITECTURE: INSTALLED NEW SYSTEM (FUNCTIONAL, SIMPLIFIED)

MIGRATION ISSUES / CHALLENGES (1/4)

Each of the above phases is plagued with difficulties. Some of the most notable are summarized hereafter (each could have a dedicated presentation):

Specification and documentation:

- Exiting system documentation is often not updated (to say the least)
- There are numerous non documented features / adaptations that may become a critical issue during validation if not properly managed. Examples:
 - Derived TM parameters
 - FDS algorithms
- Resistance to change: Expose the operations team to the new system (through demonstrations and/or prototyping)

MIGRATION ISSUES / CHALLENGES (2/4)

Historical TM migration:

- Data completeness and compatibility is a source of surprises. Detailed planning is required.
- Anticipate realistic space needs and transfer rates (for TM conversion tools)
- Best strategy for TM migration depends on many factors. It needs to include:
 - Data to be migrated: Raw vs processed TM
 - Validation is a critical task, which usually requires the development of ad-hoc tools for massive automatic comparisons between legacy data and migrated data.
- Migration of derived/synthetic TM parameters deserves a detailed analysis from start, including different aspects:
 - Migration of algorithms for the real-time generation
 - Migration of historical data
 - Validation. Differences caused by different factors.
 DSS may be needed to simulate special situations

MIGRATION ISSUES / CHALLENGES (3/4)

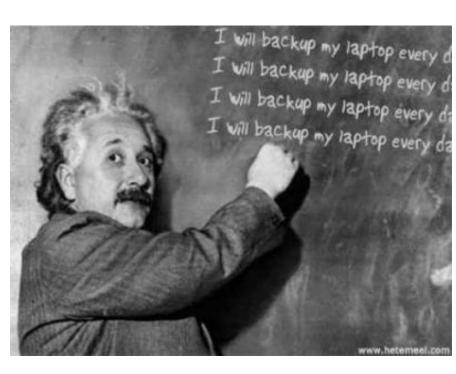
- Flight operations procedures migration is one of the most critical elements:
 - There might be paper procedures, semi automated, electronic (with versions), ... this requires a very specific analysis and strategy to be agreed with the operations team
 - Use of an advanced, open, high-level language in the new system (e.g. Python) makes things a lot easier.
 - Validation can be very costly.

Training sessions:

- Must be very thorough and cover all satellite engineers and satellite controllers; and include a differential analysis with the legacy system
- Pay special attention to train the support team so that they fully understand the new system

MIGRATION ISSUES / CHALLENGES (4/4)

- The shadow operations phase needs to be adequately planned:
 - Make sure all necessary facilities are in place to support both systems running in parallel
 - Make sure the operations team is adequately manned to support shadow operations (it implies a heavy overload)
 - Anticipate tools to perform data alignment
 - Make sure that all **external interfaces** support shadow operations (dual compatibility and concurrent operations)



LESSONS LEARNED (1/3)

- A very close collaboration between the end customer and the industrial team is essential:
 - Allows complete understanding of the legacy system
 - Ensure a smooth transition
- The migration project needs being adequately manned by the customer
 - Too easy to underestimate
- Important to involve the end customer operations team deeply into the process
 - Involve ops teams (including stakeholders) into the process, not only SW support, and understand what is critical to operations,
 - But be careful of not ruining their involvement due to excessive testing / regressions

LESSONS LEARNED (2/3)

- Highly beneficial to schedule early demonstrations and prototyping for some elements:
 - Especially important for the migration of flight operations procedures
- Customer specific operational concepts have to be taken into account from start
- Validation is essential:
 - Requires early access to tools, such as the DSS, BBUs and encryptors
 - Validation procedures have to be as close as possible to the operational usage of the system to avoid problems when the system is operationally deployed
 - Perform exhaustive factory and regression testing before submitting the system to the operations team

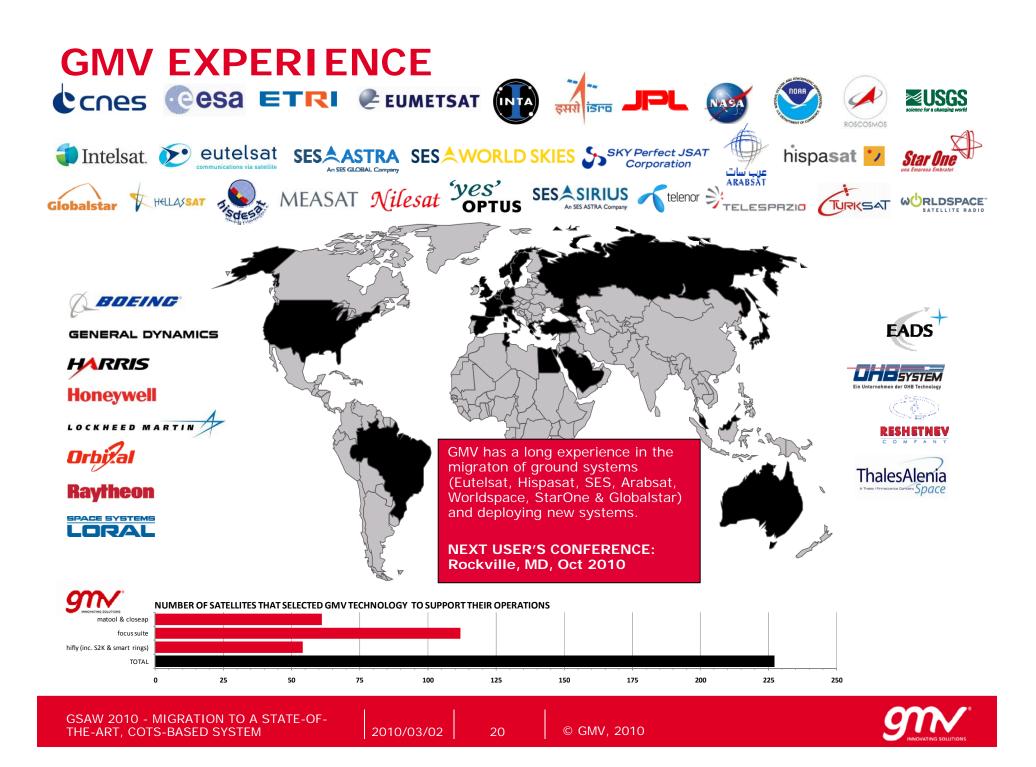
- The operations team are not 'debuggers'
- Provide **automated tools** to collect debugging information

LESSONS LEARNED (3/3)

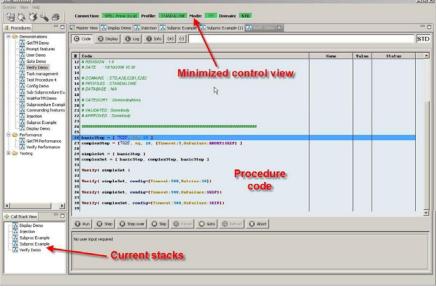
- Very important to have one baseband unit early on site for testing, considering that
 - Many issues were resolved very early on the project schedule
 - Made the unit **fully compatible** with the satellite before final integration
 - Allow anticipated end-to-end tests with telemetry processing; synchronous and asynchronous telecommand; and T&C ranging
- Importance of custom, high-fidelity algorithms for FDS to guarantee the compatibility with the legacy system

- Value of open, dynamic languages for procedures automation
- Continuous, remote availability of the DSS valuable
 - Allowed development team multiple remote validation activities
 - Possible to simulate the end-to-end tests of the new system before on-site installation

© GMV, 2010


Thank you!!

www.gmv.com


BACKUP SLIDES

OPERATIONAL PROCEDURE MIGRATION (1)

- In migrations performed by GMV automated procedures are normally converted to Python for use in *autofly*
- autofly allows the operator to develop, test, modify, schedule and execute Python procedures, with:
 - Procedure execution
 - Parallel execution supported
 - Procedure control
 - Supports Step-by-step execution
 - Procedure monitoring
- autofly supports:
 - TM access and injection
 - TC injection and status monitoring
 - Event and out-of-limits access
 - Event injection
 - Modification of out-of-limit definitions
 - Open predefined TM displays
 - Display operator messages and prompt for input
 - Procedure nesting

OPERATIONAL PROCEDURE MIGRATION (2) A translator script is created to directly translate legacy code to Python: **Development** Legacy Avoid creating Python **Procedures** environment procedures from scratch – Iterative process - Testing the procedures - Updating the translator **Python** Translator - Re-translating the **Procedures** procedures Repeated conversion issues solved autofly in translation script - Minimal amount of manual editing hifly for one time conversion issues Assures traceability is easily maintained

OPERATIONAL PROCEDURE MIGRATION (3) VALIDATION STRATEGY

Step 1

Internal Error Reporting in Translation Script

- Invalid characters
- Unexpected logical constructs and arithmetic operators
- Incorrect syntax

Step 2

Automatic Validation ····> of Python code in *autofly*

- Ensure Python code valid
- Sub-procedures called correctly

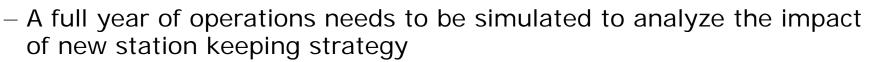
Step 3

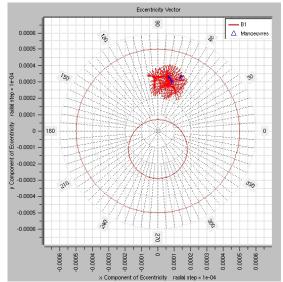
Procedure Execution
 Against the Dynamic Satellite Simulator

- All logical branches tested
- TCs recognized by the DSS and executed correctly
- TM values received, initiated execution of correct procedure
- Parameters updated
- Setting of system variables correct
- Sub-procedures initiated with variable values set

Python fully able to support the logic of legacy procedures

GSAW 2010 - MIGRATION TO A STATE-OF-THE-ART, COTS-BASED SYSTEM


2010/03/02 Page 23


FLIGHT DYNAMICS MIGRATION

- Requires careful validation:
 - To guarantee algorithm consistency
 - To avoid any impact on operations
 - Precision of the orbit determination
 - Prediction of key orbital events
 - Achievement of the orbit control goals
 - Mass consumption
- Migration strategy:
 - focusGEO already supports most commercial GEO platforms
 - Reduces the risk of deficiencies in the platform-specific support
 - Close collaboration between FDS engineers from operator and GMV to identify and address function differences:
 - Reference frames
 - Dynamic models
 - Sun & Moon position prediction models
 - Maneuver planning strategies

APOGEE ASCNODE

DESCNODE EARTHCOL BLINDING

ACRONYMS LIST

- APDA Antenna Pointing Data Angles
- BBU Base Band Unit
- COTS Commercial Off-The-Shelf
- DSS Dynamics Satellite Simulator
- FDS Flight Dynamics System
- GEO Geostationary Earth Orbit
- HW Hardware
- M&C Monitoring and Control
- RF Radio Frequency
- RG Ranging
- RTS Real Time System
- S/C Spacecraft
- TC Telecommand
- TM Telemetry

