

GSAW 2010 Working Group Session 11D

Data Center Migration for Ground Systems: Geospatial Clouds

Dr. Craig A. Lee, lee@aero.org Senior Scientist, CSD/CSTS/CSRD, The Aerospace Corp. President, Open Grid Forum

March 3, 2010

Motivations for this Workshop

- Cloud computing offers the potential for significant economies of scale, improved utilization of servers, more flexible allocation of resources, and workload management
 - Cloud computing entails the dynamic provisioning of processing, storage, and networks in a data center to essentially become a generic hosting environment, prompting the concept of "Data Center Migration" for ground system operators
- How do we apply cloud computing in support of satellite ground systems?
 - Serious challenges concerning security, performance management, portability, interoperability, costing models, lack of standards, etc.
- How do we integrate geospatial standards and tooling with dynamically provisioned resources?

- Geospatially referenced data are central to many ground systems

Agenda

- 13:00-13:15 Welcome and Introductions
 - Craig Lee, OGF & The Aerospace Corp.
- 13:15-13:50 Cloud Computing in Ground Segments: Earth Observation Processing Campaigns
 - Fabrice Brito, Terradue, s.r.l.
- 13:50-14:25 Geoprocessing in the Cloud
 - Brian Levy, Open Solutions Group & DIA
- 13:25-15:00 <Title TBD>
 - Dan Mandl, NASA Goddard & Open Geospatial Consortium
- 15:00-15:15 Break
- 15:15-15:50 Eucalyptus-based Event Correlation
 - Nehal Desai, The Aerospace Corp.
- 15:50-16:25 Developing Cloud Standards
 - Craig Lee, OGF & The Aerospace Corp.
- 16:25-17:00 Open Floor Discussion

GSAW 2010 Working Group Session 11D

Developing Cloud Standards

Dr. Craig A. Lee, lee@aero.org Senior Scientist, CSD/CSTS/CSRD, The Aerospace Corp. President, Open Grid Forum

March 3, 2010

Standards Will Be Critical to Clouds

- Most of the touted benefits will only be realized if there are commonly accepted interfaces, protocols, etc.
- At what levels in the System Stack are standards needed?
 - Infrastructure, Platform, Services?
- In which priority order?
 - What market forces will drive standardization?

Application Level	 Software as a Service (SaaS) Build an application from pre-defined service Example: Salesforce.com 	
Platform Level	 <i>Platform as a Service (PaaS)</i> Acquire a set of hosting environments Example: Google App Engine (Python) 	
Infrastructure Level	 Infrastructure as a Service (IaaS) Acquire a set of machines you can login to Example: Amazon EC2 	

What Ground System Areas Are Candidates?

A Proposed Reference Model for a Netcentric Ground System Service Architecture

Clouds compliment SOAs and the concept of Netcentricity!

*Domain Services listed are notional may be augmented in any concrete architecture. Heavily modified from USAF, Distributed Common Ground Architecture (DCGS-A).

Progression of Issues & Concerns

 Job types & mixes Job types & mixes Data access/interop Storage mgmt Workload mgmt Reliability Energy mgmt Governance VWs, VNS, VDCs Interoperability Agreement on joint operations e.g., International Grid Trust Federation Costing models Interoperability Interoperability SLAs Full Security Privacy Data Leakage Denial of Service Effective data deletion On-site inspections Understand & test provider viability Reporting Co-tenant reputation Provider viability		Private Everything within secure perimeter	Federated Known number of known tenants	Hybrid Unknown tenants but secure perimeter	Public No secure perimeter
 Governance Governance VMs, VNs, VDCs Agreement on joint operations e.g., International Grid Trust Federation Costing models Outsourceable tasks Cost Predictability Liability Reporting Co-tenant reputation Provider viability 	Technical	 Job types & mixes Data access/interop Storage mgmt Workload mgmt Reliability Energy mgmt 	 ID mgmt VO mgmt Distributed workload mgmt Portability Interoperability 	 SLAs Full Security Privacy Data Leakage Denial of Service Effective data deletion 	 Practical ways to operate on encrypted data (not!) Virtual Private Clouds
Provider viability	Legal/Org.	 Governance VMs, VNs, VDCs Costing models 	 Agreement on joint operations e.g., International Grid Trust Federation 	 Outsourceable tasks Cost Predictability Liability Reporting Costenant reputation 	 On-site inspections Understand & test provider's operation
 Avoid vendor lock-in Harmonize/shake-out relevant standards Federation Distributed mgmt Audits Harmonize/shake-out relevant standards Legal Precedent Harmonize/shake-out relevant standards 	Landscape	 Avoid vendor lock-in Harmonize/shake-out basic infrastructure standards 	 Harmonize/shake-out relevant standards Federation Distributed mgmt 	 Provider viability Audits Legal Precedent Harmonize/shake-out relevant standards 	 Harmonize/shake-out relevant standards

These Concerns Driving Lots of Activity

- Series of meetings and workshops (all dates in 2009)
 - Enterprise Cloud Conference, Open Group, Feb. 3, San Diego
 - SATCCI, OMG, March 23, Arlington/Crystal City
 - Cloud Standards Summit, OMG, July 13, Arlington/Ballston
 - Federal Cloud Symposium, July 15, Washington, DC
 - Cloud Interoperability Roadmaps, OMG, December 10, Long Beach
- Wide interest from federal agencies
 - GeoCloud NSF Workshop, Indianapolis, Sept. 17-18
 - Standards for the US Cloud Storefront, NCOIC, Sept. 21, Fairfax
 - GeoINT Technical Exch. Meeting hosted at MITRE, McLean VA, Sept. 24
- Multiple national cloud initiatives
 - US Cloud Storefront, Japanese Kasumigaseki, UK G-Cloud
- Development of potential standards
 - OCCI, vCloud, delta-Cloud, Fujitsu API, Simple-cloud, ...
- Led to creation of Cloud-Standards.org

Cloud-Standards.org

- An informal group of Standards Development Organizations (SDOs) collaborating to coordinate and communicate standards for cloud computing, networks and storage
 - Wiki: cloud-standards.org
 - Mailing List: groups.google.com/group/CloudStandards

- Different SDOs bring different but complementary technologies & capabilities
 - Storage, execution models, deployment models, service level agreements, security, authentication, privacy
- All interested, committed persons and organizations with relevant technical skills can participate

A Positioning of Cloud Standards

Courtesy of Enrico Ronco, Telecom Italia

OGF Open Cloud Computing Interface

- Interoperable IaaS Cloud API Standard
- Simple, RESTful API
 - ~15 commands very extensible
- Solid community interest: 160 members on mailing list
- www.occi-wg.org

DMTF OVF -- Open Virtualization Format

SNIA CDMI – Cloud Data Mgmt Interface

Manages the provisioning of block-oriented, file-oriented & object-oriented storage

Standardization Areas Briefed at Federal Cloud Symposium (July 15, 2009)

- Security (e.g. authentication, authorization)
- Interfaces to IaaS (e.g., compute, storage)
- PaaS & deployment formats for Cloud applications
 - Resource descriptions (required, available)
 - Service & SLA models
- Management Frameworks
 - Governance and Policy Enforcement
 - Regulatory agreements (e.g. data location and security)
 - SLA formats (e.g. performance, availability)
- Portable component descriptions (e.g. VM's)
- Data exchange formats (to and from Clouds)
- Cloud Taxonomies and Reference Models

Next Steps?

- Driving Cloud Adoption
 - Which specific satellite programs/ground systems?
 - Which specific functions?
- Driving Cloud Standards
 - "Developing Cloud Standards" -- turning the adjective into a verb
 - Getting major stakeholders to demand standards from vendors
- Technology Roadmapping
- Technology Demonstrations
- Leverage National Cloud Initiatives
 - US Cloud Storefront, UK G-Cloud, Japanese Kasumigaseki
- Leverage Existing Groups & Resources
 - Open Cloud Consortium Testbed
 - Aerospace deploying corporate cloud resource & small classified cloud resource

Open Discussion ...

- Hot Button Issues
 - ...
 - ...
- Roadmap Requirements
 - ...
 - ...
- Programs Considering Cloud Computing
 - ...
 - ...
- Possible Demonstrations
 - ...
 - ...
- Available Resources (Time, Money & People!)
 - ... – ...

Contact me: Craig A. Lee lee@aero.org

BACK-UPS

© The Aerospace Corporation 2008

Motivations?

- Commodification of compute infrastructure
 - General infrastructure that can support many programs, functions
- Improving server utilization
 - Flexibility in mapping work to servers
- Managing surge requirement with a pool of common resources
 - Sizing for the average case, rather than the worst case
- Improving reliability
 - Easier fail-over between servers
- Greener IT
 - Reduce energy costs through consolidation, improved utilization
 & moving work to where the energy is cheaper
- Many benefits will only be realized when operating "at scale"

No Shortage of Cloud Challenges

- Data access and interoperability
 - Must be done at the application domain level, by the domain users
- Security
 - Different models will expose different security threats
- Reliability
 - Managing redundancy, live migration, etc., across the infrastructure
- Frameworks
 - How to manage sets of resources, e.g., VMs and VOs?
- Performance management
 - What job mix needs to be supported, e.g., e-commerce, HPC, transactional, database, data streaming?
- Costing models
 - How to compare your own infrastructure costs with a cloud providers?

Cybersecurity Issues

- Private cloud avoid many security issues
- Governance and Policy
- Compliance and Audit
- Tamper-proof logging, integrity monitoring tools
- Information Lifecycle Management
 - Backups and recovery tests
 - Logical separation of information and protective controls
 - Compartmentalization of job duties
- Incident Response, Notification, Remediation
- Users cannot instantiate arbitrary machine images
 - Must select from an approved set of images conforming to internal policy
- Identity Management, SAML, WS-Federation
- Virtual Organization Management, SAML and XACML
- Delegation of Trust

21

- Virtualization has security advantages by creating isolated environments
- VM-specific security mechanisms may need to be embedded in hypervisor APIs
- Secure communication among sites

Public vs. Private Cloud Issues

- Cost & Cost Predictability
- Users expect to monitor & manage "their" infrastructure
 - Will a public cloud provider expose enough information for a client to troubleshoot when something goes wrong?
- Security & Privacy
 - You can store encrypted data in a clouds, but can you compute on it?
- Regulation
 - Physical location of data
 - Long-term audit trails (15-20 years)
- Individual vs. Corporate Requirements
 - Corporate use of public clouds may entail legal & contracting overheads
 - Ease of use and quick provisioning may tempt individuals to ignore corporate procedures
 - Trade-off between quick results and risk exposure
- Internal IT departments may want to offer their own "seed cloud"
- Interoperability & portability between private and public clouds

Map-Reduce

Example: counting the number of occurrences of each word in a large set of documents

map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 Emit(AsString(result));

Hadoop

- Implements MapReduce using the Hadoop Distributed File System (HDFS)
 - MapReduce divides applications into many small blocks of work
 - HDFS creates multiple replicas of data blocks for reliability, placing them on compute nodes around the cluster
 - MapReduce can then process the data where it is located
- Efficient: by distributing the data, can process it in parallel on the nodes where the data is located
- Reliable: automatically maintains multiple copies of data and automatically redeploys computing tasks based on failures
- Scalable: can reliably store and process petabytes
- Demonstrated on clusters with 2000 nodes
 - Current design target is 10,000 node clusters
- An open source volunteer project under the Apache Software Foundation
 - hadoop.apache.org/core

Other APIs / Interfaces

