

"Geoprocessing in the Cloud"

Brian Levy
Open Solutions Group, Inc
Defense Intelligence Agency

Who We Are

- Open Solutions Group, Inc.
- Small Business, founded in March 2008
- Locations in Northern Virginia & Southern California
- IT Solution Provider with extensive background and expertise in Enterprise **Geospatial Information Systems**

We embrace Open Source to... ... break low productivity habits

We did NOT INVENT it, Therefore we will NOT use it!!!

Support The Intel Community

- Defense Intelligence Agency
 - DIA JWS-3 Battlespace Visualization
 - National Ground Intelligence Center
 - Anti Armor Analysis Program
 - Warfighter Imagery Server
 - JSPACE, DODIIS Portal, OPTIC

"Cache the World" Challenge

 On-going initiative with Defense Intelligence Agency to improve reliability and performance for optimal data visualization on the web...

"My Maps Must Refresh in Less than 1 Second!"

- Fighting traditional map generating bottlenecks
- Refresh rate is typically between 4 − 12 seconds
- Slow Map Services are Not Very Interesting!

DIA Enterprise GeoCache

- Provide High Performance Access to NGA Products (Global)
 - CIB, DTED, SRTM, VMAP, NVUE, CADRG
- "Cache The World!"

- Attempted Cache Generation Against Existing GIS Infrastructure = FAILURE
- Middleware bottlenecks persisted due to constant image requests for multiple image tiles

Scanned Map Products

Map Product Name	Zoom Levels	Scales
GNC	0-6	1:221M - 1:3.5M
JNC	6-8	1:3.5M - 1:865K
ONC	7-10	1:1.7M - 1:216K
TPC	8-11	1:865K - 1:108K
JOGA	9-11	1:432K - 1:108K
TLM100	10-12	1:216K - 1:54K
City Graphics	11-16	1:108K - 1:3.5K

Imagery Products

Natural View & Controlled Image Base (CIB)

Imagery Product Name	Zoom Levels	Scales	
NaturalVue	4-11		1:13.8M - 1:108K
CIB1 Meter Imagery	6-16		1:3.4M - 1:3.5K
CIB5 Meter Imagery	9-13		1:432K - 1:27K
CIB10 Meter Imagery	6-9		1:3.4M - 1:432K

Vector Products

- Collection of data from VMap0, VMap1 and Shapefiles
- Features from different layers are visible at various scales
- The new standard for Basemap

got cloud?

Our Geoprocessing Toolbox

Geospatial Data
Abstraction Library
"goo-doll"

Raster/Vector Translation Library

mrGeo
Map Reduce Geospatial

MapNik
TileCache
MapServer

Image Processing Library

Format Conversion Resize, Rotate, Crop Composites Transparency

Our Geoprocessing Warehouse

- Developed Cloud Geoprocessing Infrastructure for Server Management, Job Queue Management, Workers, and Error Reporting
- Provide Status, Tracking, and Metrics for Process Management.
- ➤ Manage 100s of thousands of geoprocessing jobs
- ➤ All available NGA Products Managed and Processed

The Assembly Line

Source Data

- 1. Data Arrives At Warehouse
- Workers Begin Shift (Server Provisioning)
- 3. Jobs Assigned to Workers on Assembly Line (Queue)

4. Foreman oversees Quality and Errors (QA/QC)

Geoprocessing Workflow (DTED)

Geoprocessing Output (DTED)

Interoperability

- Leverage Geospatial Standards (OGC)
- Tighter Integration with MapReduce (Hadoop) to achieve parallel geoprocessing over vector datasets (vmap, osm)
- Provide multiple Output Formats to achieve interoperability and reuse
 - Completely Open Mapping Environment (COMET)
 - ArcGIS Desktop
 - Google Earth
 - WMS Clients, Tiling Clients (TMS, TileCache), Mashups
 - Adobe Flex, Microsoft Silverlight

Maintain Cloud Control (QA / QC)

 Thousands of processes can (and will) generate thousands of errors during operation

```
1,000,000 Geoprocessing Jobs 0.5 % Margin = 5,000 Processing Errors
```

- System and resource failures will occur during high volume operations
- Each geoprocessing job must hold accountability
- High volume output must be verified by algorithms and humans

Global Catalog of Products

Geoprocessing Dashboard

Geoprocessing Status

- When did the Job Start?
- When did the Job Finish?
- How large is the output?
- How many tiles were generated from this single product?

The Hard Numbers (CIB1)

- > INPUT
 - 6963 Original Products @ 2.3 Terabytes
- PROCESSING
 - 9000 Processor Hours (over 1 human year)
 - Completed in 4.5 Hours
 - 2,000 Servers
- > OUTPUT
 - 14 Terabytes of Processed CIB1 Imagery
 - 338 Million Image Tiles (256*256 pixels)

The Really Hard Numbers

Computing Time of 40,000 hours

- A Sequential Process Would Take 5 Years to Complete!
- We sliced processing duration to 24 Hours

- 3.5 TB of NGA Products Processed
- 30 TB of Cached Products Generated
- 1 Billion Image Tiles (256*256 pixels)

Geoprocessing On Demand

- OSGI & SPADAC together are enabling "Geoprocessing On-Demand" with shared models and derivatives
- ➤ Leverage Community TradeCraft
- mrGeo Library for supporting parallel image processing (Map Reduce)
- ➤ Input Digital Elevation Models to produce GeoTIFF outputs
- ➤ Plug-n-Play with Geoprocessing Infrastructure

SRTM2 (30m) Value Added Layers

Derived Surfaces will Include:

- 1. Hillshade
- 2. Slope
- 3. Aspect
- 4. Terrain Ruggedness Index (TRI):
 - A measure of terrain variability—crucial to understanding peoples interaction with terrain.
- Relevation (Relative Elevation):
 - A cells elevation relative to its surrounding environment.

Relevation (Relative Elevation) Index Calculation

- Modification of Topographic Position Index (TPI), introduced by Weiss (2001).
- Difference in elevation between a cell and the average of its neighbors.
- Neighborhood measurements account for map distortions across all latitudes.

Terrain Rouggedness Index

- Adapted from Riley et al. (1999) to measure the variability of a landscape.
- A key parameter in distinguishing suitable/unsuitable terrain for people and infrastructure.

Geoprocessing On Demand

- Benchmarking for Iteration I
 - Input 13,000 SRTM products
 - Requires 20,000 processing hrs (Over 2 years)
 - ETA 0.5 days for completion
 - Generate 2.5 TB Output (GeoTIFF)
- Cost Estimates
 - Cheaper than a Dell PowerEdge
 - Costs less than an ArcInfo Single Use License
 - Equivalent to 5 days work of an analyst

Large Data Lessons Learned

- GeoCache Deployment
 - Moving Tremendous Amounts of Data (30TB)
 Compress, Copy, Copy, Copy Again, Uncompress
 - Groundbreaking = Limited Support
 - QA Is Difficult (the Earth?)

Future Direction

- GeoProcessing On-Demand for unique user/analyst requirements
- Identify and Leverage New Cloud Environments for Real Time Provisioning
 - JWICS
 - SIPRNET*
- Mobile Units & Portable "Local" Export
- Enterprise GeoCache Appliance
- New approaches to improve process

Questions?

Brian Levy

President & CEO

email: brian.levy@opensgi.com

office: 858-312-5390

CORPORATE HEADQUARTERS
1394 OLD GALLOWS ROAD, SUITE 350
VIENNA, VA 22182

540-288-8466

11440 West Bernardo Court, Suite 300

San Diego, CA 92127

858-312-5390

www.OpenSGI.com