
© 2016 The Aerospace Corporation

Software Systems Engineering 
and Rapid Development Methods

GSAW Feb. 29-March 3, 2016 
Renaissance Los Angeles Airport Hotel, Los Angeles, CA

Presenters:
David B. Mayo, PhD
Tiara C. Johnson

Space Architecture Department
SAD/ADS/SED



2

Outline
The following discussion will highlight maturing software development cycles, project 
lifecycles, and how the government can adapt to the ever changing community. 

• Introduction/background
– Problem Statement
– Summary of Key Topics

• Recommendations

• Proposal for new readiness review cycles

• Overview of Project Metric Comparison



3

Software Develop Lifecycles and Systems Engineering

• Traditional systems engineering processes make it difficult to meet the 
needs of the software development community. This is our motivation 
for this study.

– Faster processes for developing requirements are needed; there is a 
mismatch in timing between the space vehicle development process and the 
ground system software development process

What lifecycle models are out there, and 
how do we choose the correct model for our project? 



4

Systems Engineering Processes

The basic Systems Engineering processes that need to take place 
regardless of the software development model or methods

Functional Analysis/Allocation
• Decompose to lower-level functions
• Allocate performance and other limiting requirements 

to all functional levels
• Define/refine functional levels
• Define/refine functional interfaces (internal/external)
• Define/refine/integrate functional architecture

Synthesis
• Transform architectures (functional to physical)
• Define alternative system concepts, configuration 

items and system elements
• Define/refine physical interfaces 

(internal/external)
• Select preferred product and process solutions

Verification Loop

Design loop

Requirements  loop

Requirements Analysis
•Analyze missions and environments
•Identify functional requirements
•Define/refine performance and design 
constraint requirements

Requirements Analysis
•Analyze missions and environments
•Identify functional requirements
•Define/refine performance and design 
constraint requirements

System
Analysis

and Control
(balance)

Control  
loop

Process output
• Phase dependent

– Decision support data
– System architecture
– Specifications and baselines

Process input
• Customer needs/

objectives/
requirements

– Missions
– Measures of 

effectiveness (MOEs)
– Environments
– Constraints

• Technology base
• Outputs from prior phase
• Program decision 

requirements
• Requirements applied 

through specifications
and standards

• Trade-off studies
• Effectiveness analyses
• Risk management
• Configuration management
• Interface management
• Data management
• Performance based

progress measurement
– IMP/IMS
– TPM
– Technical reviews

• Trade-off studies
• Effectiveness analyses
• Risk management
• Configuration management
• Interface management
• Data management
• Performance based

progress measurement
– IMP/IMS
– TPM
– Technical reviews



5

System 
(Mission Unique/Common 
Services)

Acquisition Readiness Launch Readiness

Ac
qu

is
iti

on
 S

eg
m

en
ts

Collection
(Space and Ground 
Elements)

Operational Readiness

Ground 
Acquisition

Common Service 
Acquisition

Current Waterfall Development Readiness Reviews

SRR – System requirements Review
SFR – System Functional review
GSSR – Ground System Readiness Review
SSR – System Status Review
SCR – System Closure Review
ERR – Enterprise Readiness Review
LCR – Launch Certification Review

MCR – Mission Certification Review
CRR – COMM Readiness Review
PSR – Pre-Ship Review
GPRR – Ground Project Readiness Review
VCC – Vehicle Checkout Complete
IOC – Initial Operational Capability
FOC – Full Operational Capability

DDR – Deactivation and Disposal Review

Reference: 
Adapted Gov’t Lifecycle Readiness 

Instruction

GSRR

SRR SFR SSR SCR ERR LCR MCR

SRR SDR PDR CDR

CRR

PSR

SRRs PDRs CDRsSDRsGPRR
ORR/
OAR

Mission
IOC      FOC DDR

ORR/
OAR

Mission
IOC      FOC DDR

VCC
Mission

IOC      FOC DDR

Initiation 
Event(s) Reqts Design 

reviews PSR
Closure 
Reviews

PSR GCR GRR



6

Incremental and Iterative Software Development

Key Principles
• Incremental and iterative development  is a process that grows a system feature by feature 

during self-contained cycles of analysis, design, development and testing that end in the 
production of a stable, fully integrated and tested, partially complete system that incorporates 
all of the features of all previous iterations.

Examples
• Incremental Build Model
• Spiral model
• Agile Software Development

– SCRUM
– Extreme Programming (XP)
– Dynamic Systems Development Method (DSDM)
– Crystal
– Feature Driven Development (FDD)

Examples
• Rational Unified Process (RUP)
• Concurrent Engineering Model
• Rapid Application Development (RAD)
• Joint Application Development (JAD)
• Adaptive Software Development
• Lean Software Development

– Kanban



7

Agile Software Development

Key Principles
• Customer satisfaction by rapid delivery of useful software
• Regular adaptation to changing circumstances
• Close, daily cooperation between business people and 

developers
• Projects are built around motivated individuals, who should be 

trusted
• Face-to-face conversation is the best form of communication 

(co-location)
• Working software is the principal measure of progress
• Self-organizing teams

Benefits
• Welcome changing requirements, even late in development
• Working software is delivered frequently (weeks rather than 

months)
• Sustainable development, able to maintain a constant pace
• Continuous attention to technical excellence and good design
• Simplicity—the art of maximizing the amount of work not 

done—is essential
• Regular adaptation to changing circumstances

Challenges
• Current review system is not compatible with Agile
• Agile uses less documentation
• Government and contractors unfamiliar with Agile
• Culture heavily invested in traditional method
• Progress and value can’t be tracked in same way
• Agile requires collaboration and contracting office is not 

collocated
• Policy to estimate cost based on well known requirements 

that don’t exist in Agile



8

Problem Potential Solution

Culture heavily invested in traditional 
development methods

- Educate and prepare for organizational change and management issues associated 
with adopting non-traditional development methods

• What contract changes would be needed?
• What changes to the approach of monitoring development progress will be 

needed?
• What type of staff members are needed on both sides (government and 

contractor)?
• Which of the Acquisition process formalities will need to be tailored?

- Observe and communicate with other organizations/agencies employing non-
traditional development methods

- Identify and execute pilot programs that will progressively expand the organization’s 
expertise, body of knowledge and level of comfort/trust

Government and contractors 
unfamiliar with non-traditional 
methods

- Train project managers, contractor staff and all other relevant stakeholders in key 
aspects of selected method

- Document and publish specific roles and responsibilities associated with new 
method

- Employ an experienced coach or knowledgeable advocate to help guide team 
members and stakeholders throughout the process of executing the new method

Procurement practices may not 
support non-traditional projects
• Long bidding process/contract 

cycles aren’t right for short 
increments

- Develop RFPs and SOWs that accommodate non-traditional development projects
• Review the necessity for a full compliment of CDRLs

- Use performance-based acquisitions to assist in monitoring contractor progress 
towards achieving actual results against planned objectives

- Tailor contract vehicles

Problem Potential Solution

Current review process is not 
compatible with non-traditional 
methods

- Split milestone reviews into smaller Interim Design Reviews
- Modify entry and exit criteria to accommodate artifact maturity

Less documentation produced with 
non-traditional methods

- Ensure that acquirer understands the documentation process
- Negotiate appropriate level of detail for all artifacts

Progress and value can’t be tracked 
in same way with non-traditional 
methods

- Develop the Integrated Master Schedule (IMS) to an appropriate level of granularity 
(suggest that an iteration be the lowest level of granularity)

- Negotiate with contractors and customer to define suitable progress metrics 

Increased team collaboration 
required for non-traditional methods

- Locate contracting officer on site full time
- Rotate (~2 weeks) small teams of customer representatives to the contractor site 
- Ensure that true users participate in the development process
- Identify a single user voice, that can commit to changes for the product being 

developed, to participate in the development process

System Testing initiated at 
completion of a traditional 
development process

- Test incrementally. Engage at the development iteration level

Potential Challenges in Adopting Non-Traditional Software 
Development Methods with Government Acquisitions



9

Recommendations for Aligning Systems Engineering Support with 
Non-Traditional Software Development Methods

Apply these steps when considering how to respond to proposed software 
development models for a specific program/project

• STEP 1: Evaluate status of enterprise level culture and expertise with respect 
to the proposed software development method

– Consider need for top-down fostering of culture and training of personnel

• STEP 2: Document Program/Project characteristics that determine 
appropriateness of software development methods

– Use attached checklist to summarize findings

• STEP 3: Validate that the proposed development methodology is consistent 
with project characteristics

– Compare priorities of project with software development method strengths and 
weaknesses

• STEP 4: Align Systems Engineering and Lifecycle Readiness Processes with 
the selected methodology

– Define tailored series of readiness reviews to match project characteristics; see 
attached examples



10

System 
(Mission Unique/Common 
Services)

Acquisition Readiness Launch Readiness

Ac
qu

is
iti

on
 S

eg
m

en
ts

Collection
(Space and Ground 
Elements)

Operational Readiness

Ground 
Acquisition

Common Service 
Acquisition

Possible Ground Agile Development Readiness 
Reviews

For Agile ground software development use a sub-set of the traditional 
Reviews and iterate as needed. 

SRR – System requirements Review
SFR – System Functional review
GSSR – Ground System Readiness Review
SSR – System Status Review
SCR – System Closure Review
ERR – Enterprise Readiness Review
LCR – Launch Certification Review

MCR – Mission Certification Review
CRR – COMM Readiness Review
PSR – Pre-Ship Review
GPRR – Ground Project Readiness Review
VCC – Vehicle Checkout Complete
IOC – Initial Operational Capability
FOC – Full Operational Capability

DDR – Deactivation and Disposal Review
Demo – Showing output of latest iteration

Reference: Adapted from Gov’t Lifecycle 
Readiness Instruction

SRR SFR SSR SCR ERR LCR MCR

ORR/
OAR

Mission
IOC      FOC DDR

ORR/
OAR

Mission
IOC      FOC DDRInitiation 

Event(s) Reqts Design 
reviews PSR

Closure 
Reviews

SRRs PDRs DemoSDRs

ORR/
OAR

Mission
IOC      FOC DDR

SRR SDR PDR CDR

CRR

PSR

PSR GCR GRR



11
SAD/ADS/SED

Metrics to Evaluate the Benefits of Innovative Software 
Development Lifecycles

Schedule

•Number of Software 
Releases 

•Cycle time of 
software releases 
(amount of time to 
release)

•Unit of work 
completion number 
and rate, measured 
in value in EVM, or 
story points in agile

•Length of Project

Scope

•# unit of work, 
measured in value in 
EVM, or story points 
in agile, or CSCI’s

•Number of Reqs
•# of Expected 
Changed/Altered/Upd
ated Requirements 
(measures 
adaptability)

•# of Contract 
Changes

•Lines of Code
•# of Test cases 
developed, executed, 
passed

•# of Documents

Cost

•Cost
•Budget at 
Completion

Quality

•Problem Reports 
opened, closed

•Problem Report 
closure rate

•Average Problem 
Report closure time

Risk/Safety

•Number of Tracked 
Risks

•Number of Resolved 
Risks

•Number of Lessons 
Learned

• How can we compare similar or identical software projects that use 
different lifecycles in order to determine the true efficiency or value of 
using an innovative approach over a standard one?

• The choice for using waterfall development or a new, innovative approach 
needs to be based on the overall project goals.



12
SAD/ADS/SED

Comparing metrics across projects
Consider the questions from Step 2 in the Recommendations

Project with similar content will have similar 
results:

Similar project content,
Similar lifecycle

Similar project content, 
Different lifecycle

– Are the requirements well-established, or ill-
defined?

– Are the requirements fixed, or likely to change 
as the project progresses?

– Is the project small to medium-sized (up to 4 
people for 2 years) or larger?

– Is the application similar to projects that the 
developers have experience in, or is it a new 
area?

– Is the software likely to be straightforward or 
complex (e.g. does it use new hardware)?

– Does the software have a small easy user 
interface or a large complex user interface?

– Must all the functionality be delivered at once 
or can it be delivered as partial products?

– Is the product safety critical or not?

Direct comparison of 
metrics in all phases. 

– Cost
– Schedule
– Budget

Direct comparison of 
metrics at project 
boundaries. 

– Baseline
– Launch
– Completion

Different project content, 
Similar lifecycle

Different project content, 
Different lifecycle

Comparison of 
normalized metrics 
(relative to “ideal”) 
during all phases. 
– Cost
– Schedule
– Budget

Comparison of 
normalized metrics 
(relative to “ideal”) 
across projects at project 
boundaries. 
– Cost Variance
– Schedule Variance
– Problem Reports 



13
SAD/ADS/SED

Summary

• Traditional systems engineering processes are not meeting the 
needs of the software development community in the context of 
ground systems

• Methods
– Incremental/Iterative Software Development Methods
– Agile

• Proposal for new readiness review cycles and recommendations
1. Evaluate status of enterprise level culture and expertise with respect to the proposed software 

development method

2. Document Program/Project characteristics that determine appropriateness of software development 
methods

3. Validate that the proposed development methodology is consistent with project characteristics

4. Align Systems Engineering and Lifecycle Readiness Processes with the selected methodology



© 2014 The Aerospace Corporation

Back-Up



15
SAD/ADS/SED

Incremental Software Development

Key Principles
• User requirements allocated to multiple releases
• Initial release includes core functionality (High priority 

requirements)
• Completed functionality is operationally ready
• Subsequent releases provide additional functionality
• Each release consists of a requirements, design, 

implementation and testing phase

Benefits
• Decreased “Time to Market” for core capabilities.
• Decreased cost for initial delivery
• Facilitates more targeted and rigorous testing
• Implementation errors more easily identified because of fewer 

requirements and capabilities in each release
• Easier to accommodate changes in requirements
• Easier to manage risk (high risk requirements are identified 

and mitigated by release)
• Customer can provide feedback after each release

Challenges
• Requires good initial design and analysis of the entire system 

in order to define cohesive releases
• Total cost may exceed the cost of traditional development
• Possible system architecture mismatch as additional 

functionality is added
• Additional (repetitive) regression testing required



16
SAD/ADS/SED

Iterative Software Development

Key Principles
• Initial specification of a subset of the total requirements 
• Cyclic process of prototyping, testing, analyzing, and refining 

the requirements and the solution
• Continuous user feedback solicited and used to modify the 

design of subsequent iterations

Benefits
• The initial design is available earlier for user evaluation
• Allows for concurrent implementation (Overlapping iterations)
• Implementation errors more easily identified 
• Easier to accommodate changes in requirements
• User feedback solicited and incorporated in all phases

Challenges
• Total cost may exceed the cost of traditional development
• Possible system architecture mismatch as additional 

functionality is added
• Poorly defined iteration exit criteria can cause cost and 

schedule overruns
• Continuous user feedback may result in scope creep



17
SAD/ADS/SED

Incremental and Iterative Software Development

Key Principles
• Incremental and iterative development  is a process that grows 

a system feature by feature during self-contained cycles of 
analysis, design, development and testing that end in the 
production of a stable, fully integrated and tested, partially 
complete system that incorporates all of the features of all 
previous iterations.

Examples
• Incremental Build Model
• Spiral model
• Agile Software Development

– SCRUM
– Extreme Programming (XP)
– Dynamic Systems Development Method (DSDM)
– Crystal
– Feature Driven Development (FDD)

Examples
• Rational Unified Process (RUP)
• Concurrent Engineering Model
• Rapid Application Development (RAD)
• Joint Application Development (JAD)
• Adaptive Software Development
• Lean Software Development

– Kanban



18
SAD/ADS/SED

Free & Open Source Software

Key Principles
• Open Source Software is software distributed under terms 

maintained by the Open Source Initiative (OSI)
• Human readable source code is available and freely distributed 

(allowed in both compiled and source form)
• Software is redistributable (subject to licenses, it may be sold)
• Derived works are allowed, but often must be distributed under the 

same terms as the original license (‘Viral’ Licensing)
• Licensing provide means for distribution, modification, and use
• Enables community writ large access to develop key methods or 

components 

Benefits
• Potential to reduce development times through use of pre-

existing tools
• Continuous and broad peer-review supports reliability and 

security
• Unrestricted ability to modify source code enables adaptability 

toward changing situation, mission and threats
• Reliance on singular developer or vender due to proprietary 

restriction may be reduced (OSS maintenance from multiple 
vendors, reduce barrier to entry)

• OSS licenses do not restrict who or what fields can use the 
software: rapid provisioning of known and unanticipated users

Challenges
• Licensing can be a complication
• “Free” – No warranties expressed or implied when using the 

software. Bugs can, and often will, occur, OSS projects 
mitigate risk of bugs using tools and processes, Companies 
will often sell tech. support for their OSS

• Focus on working software over comprehensive 
documentation

• Code itself is often seen as the ‘documentation’
• Open means open: Anyone who can access the code or 

project can potentially contribute
• Usually contributions are vetted only for accuracy (expected 

input/output)



19
SAD/ADS/SED

Model Based Systems Engineering

Key Principles
• MBSE is Model-Centric rather than Document-Centric 
• It’s not modeling and simulation, or just using models – it’s using 

models as the method of recording your design. 
• Traditional Systems Engineering uses documents to describe 

systems
– System requirements, system design, interface requirements, sub 

system requirements, etc. are all contained in documents
• MBSE uses models to describe systems

– System requirements, system design, interface requirements, sub 
system requirements, etc. are all contained in model(s)

Benefits
• Higher productivity
• Easier to verify the design
• Both the system and software design can leverage the 

modeling tool for design verification 
• Increases design quality
• Increased interoperability: abstract higher level model used to 

generate the detailed lower level models
• Reduced maintenance – no document maintenance, just 

design maintenance

Challenges
• Inadequate tool support (over 50 tools used, no current 

market leader, expensive, open source tools not) capable of 
meeting the needs

• Tool integration difficult
• Government must purchase licenses & training for tools
• Must know how to write RFP and contract when MBSE is 

used
• Cultural changes are required: CDRLs are models, not 

documents
• Challenges with autocode, such as the lack of optimization
• Lack of standardized MBSE Metrics



20
SAD/ADS/SED

Recommendations for Aligning Systems Engineering Support with 
Non-Traditional Software Development Methods

• Knowledge of Agile Principles, Benefits, and Risks
– Challenges

• Lack of Familiarity with Agile Among Acquisition Professionals      
• Perception that Agile Equals Higher Risk        

– Solutions
• Increase Knowledge through Educational Sessions and a Myth-Busting Campaign    
• Expose Acquisition Professionals to Agile Development Products   
• Develop Agile Procurement Coaches         
• Refocus Attention on “Top 4 Risks”         

• Stakeholder Ownership & Decision Making
– Challenges

• Lack of Empowerment and Accountability       
• Lack of Commitment and Engagement        

– Solutions
• Identify and Empower Stakeholders Early       
• Product Owner as a Near Full-time Role       
• Product Owner as Career Building Role 

STEP 1: Evaluate status of enterprise level culture and expertise with respect to the proposed 
software development method



21
SAD/ADS/SED

Recommendations for Aligning Systems Engineering Support with 
Non-Traditional Software Development Methods

STEP 2: Document Program/Project characteristics that determine appropriateness of
software development methods by answering questions such as those given below

Sample Questions
• Are the requirements well-established, or ill-defined?
• Are the requirements fixed, or likely to change as the project progresses?
• Is the project small to medium-sized (up to 4 people for 2 years) or large?
• Is the application similar to projects that the developers have experience in, or is it a new area?
• Is the software likely to be is it straightforward or complex (e.g. does it use new hardware)?
• Does the software have a small easy user interface or a large complex user interface?
• Must all the functionality be delivered at once or can it be delivered as partial products?
• Is the product safety critical or not?
• Are the developers largely inexperienced or mainly experienced?
• Does the organizational culture promote individual creativity and responsibility or does it rely on 

clear roles and procedures?

SDLC AND MODEL SELECTION



22
SAD/ADS/SED

Recommendations for Aligning Systems Engineering Support with 
Non-Traditional Software Development Methods

STEP 3: Validate that the proposed development methodology is consistent with project 
characteristics

– Compare priorities of project with software development method strengths and 
weaknesses

– Example descriptions of software development methods with their strengths and 
weaknesses are given in the following 2 slides



23
SAD/ADS/SED

Step 3: Lifecycle Model Definitions & Applications
Waterfall

Selecting a Development Approach Dept. of Health and Human Services 2008

Development Method Most Appropriate Least Appropriate

Waterfall

Traditional method of project 
lifecycle. Phases include: Initiation, 
Planning, Execution, Monitoring and 
Controlling and Closing. 
Requirements are documented in 
detail, up front, followed by 
refinement in the system and then 
testing – in a “waterfall” fashion. 

- Project is for development of a mainframe-based 
or transaction-oriented batch system.

- Project is large, expensive, and complicated.

- Project has clear objectives and solution.

- Pressure does not exist for immediate 
implementation.

- Project requirements can be stated 
unambiguously and comprehensively.

- Project requirements are stable or unchanging 
during the system development life cycle.

- User community is fully knowledgeable in the 
business and application.

- Team members may be inexperienced.

- Team composition is unstable and expected to 
fluctuate.

- Project manager may not be fully experienced.

- Resources need to be conserved.

- Strict requirement exists for formal approvals at 
designated milestones.

- Large projects where the requirements are not 
well understood or are changing for any reasons 
such as external changes, changing expectations, 
budget changes or rapidly changing technology.

- Web Information Systems (WIS) primarily due to 
the pressure of implementing a WIS project quickly; 
the continual evolution of the project requirements; 
the need for experienced, flexible team members 
drawn from multiple disciplines; and the inability to 
make assumptions regarding the users’ knowledge 
level.

- Real-time systems.

- Event-driven systems.

- Leading-edge applications.



24
SAD/ADS/SED

Step 3: Lifecycle Model Definitions & Applications
Iterative & Incremental

Selecting a Development Approach Dept. of Health and Human Services 2008

Development Method Most Appropriate Least Appropriate

Incremental and iterative 
development  is a process that grows 
a system feature by feature during 
self-contained cycles of analysis, 
design, development and testing that 
end in the production of a stable, fully 
integrated and tested, partially 
complete system that incorporates all 
of the features of all previous 
iterations.

Examples Include: 
• Incremental Build Model
• Spiral model
• Agile Software Development
• Rational Unified Process (RUP)
• Concurrent Engineering Model
• Rapid Application Development 

(RAD)
• Joint Application Development 

(JAD)
• Adaptive Software Development
• Lean Software Development

Iterative

- Project is for an online system requiring extensive user dialog, or for 
a Less well-defined expert and decision support system.
- Project is large with many users, interrelationships, and functions, 
where project risk relating to requirements definition needs to be 
reduced
- Project objectives are unclear. Pressure exists for immediate 
implementation of something.
- Functional requirements may change frequently and significantly.
- User is not fully knowledgeable.
- Team members are experienced (particularly if the prototype is not
- Team composition is stable & Project manager is experienced.
- No need exists to absolutely minimize resource consumption.
- No strict requirement exists for approvals at designated milestones.
- Analysts/users understand the business problems involved, before 
they begin the project.
- Innovative, flexible designs that will accommodate future changes are 
not critical.

- Mainframe based or transaction oriented batch 
systems.

- Web-enabled e-business systems

- Project team composition is unstable.

- Future scalability of design is critical.

- Project objectives are very clear; project risk 
regarding requirements is very low.

Incremental

- Large projects where requirements are not well understood or are 
changing due to external changes, changing expectations, budget 
changes or rapidly changing technology.

- Web Information Systems (WIS) and event driven systems

- Leading-edge applications.

-Very small projects of short duration

- Integration and architectural risks are low.

- Highly interactive applications where the data 
for the project already exists (completely or in 
part) and the project largely comprises analysis 
or reporting of the data



25
SAD/ADS/SED

Recommendations for Aligning Systems Engineering Support with 
Non-Traditional Software Development Methods
STEP 4: Align Systems Engineering and Lifecycle Readiness Processes with the selected 
methodology

• Update the readiness review schedule for the specific software development model, as proposed in the following slides

Acquisition Best Practices to Procure IT Services, 2014 

Category Challenges Solutions 

Performance 
Measurement     

• Typical Performance Measures Do 
Not Measure Customer Satisfaction or 
Value

• Lack of Pre-Defined Documented 
Standard to Define Acceptance 
Criteria       

• Collaborate with Stakeholders, Agency Leadership, and Office of Management 
Budget

• Focus on Core Capabilities of Software Functionality and Iterative 
Documentation Development for what is really needed for the moment       

• Adopt Suitable Cost and Schedule Performance Measures        
• Measure Quality via Customer Satisfaction which can determine value to the 

mission

Contract 
Types          

• The Drive towards Firm-Fixed Price 
(FFP) Scope Contracts – current trend 
for acquisitions       

• Use Time & Material, Cost Plus Fixed Fee, FFP Level of Effort, and Labor Hour 
Contracts

• Avoid Firm Fixed Price Scope Contracts which discourages flexibility/changes 
or uncertainty in requirements

Internal 
Government 
Costs

• Difficulty Accounting for All 
Government Costs due to undefined 
roles and responsibilities (R&R)

• Identify, Track, and Quantify Internal Government Costs with well defined R&R
• Address the Myth of Administrative Burden on Flexible Projects

Testing and 
IV&V

• Approach to IV&V May Add 
Unnecessary Cost 

• Set Expectation that IV&V Testers Will Be Integrated into the Project Team
• Refocus IV&V towards Quality Control and Process Improvement



26
SAD/ADS/SED

Comparing metrics across projects

Apply the metrics as appropriate based on whether the project content and 
project lifecycle models are similar or different

Lifecycle

Similar Different

P
ro

je
ct

 C
on

te
nt

S
im

ila
r

Similar project content, Similar lifecycle Similar project content, Different lifecycle

A project in this category will have a direct 
comparison of all metrics in all phases. 

A project in this category will have direct 
comparison of metrics only at project 

boundaries. 

Cost
BCWP, 

ACWP, CV, 
CPE, EAC

Schedule
PV, EV, 

SV

Scope
Work planned,

Work to complete

PV & Budget 
at Baseline

SV, AC, at 
Launch

AC, EV at 
Completion

D
iff

er
en

t

Different project content, Similar lifecycle Different project content, Different 
lifecycle

A project in this category will need to use a 
comparison of normalized metrics (relative to 

“ideal”) during all phases. Use indices for 
normalization. 

A project in this category will need to use a 
comparison of normalized metrics (relative 
to “ideal”) across projects only at project 

boundaries. 

Cost
CPI

Schedule
SPI

Scope
Remaining

Milestones/Complet
ed Milestones

Cost Variance 
at Baseline

Schedule 
Variance at 

Launch

Number of
Problem 

Reports at 
Completion



© 2014 The Aerospace Corporation

Healthcare Marketplace Failure
A Case Study in a Failed Agile Approach



28
SAD/ADS/SED

Background

• Patient Protection and Affordable 
Care Act passed in March 2010. 
Law required operational 
marketplaces by Jan 1, 2014

• Healthcare.gov was to be the 
federal marketplace used by US 
residents to shop for health 
insurance in states without their 
own healthcare marketplaces

• First of its kind federal marketplace 
was a complex effort exacerbated 
by compressed time frames and 
changing requirements. Failures 
included
– Significant cost increases
– Schedule slips

– Delayed system functionality
– Inadequate verification prior to 

release
• Results

– Non functioning marketplaces at time 
of release

– Extension of  enrollment deadline
– Brought in new contractors to fix the 

product leading to even higher costs
• Current status

– Now runs smoothly for most users
– End of open enrollment
– 8 million people signed up for private 

health insurance in the first year 
(using state and federal sites)



29
SAD/ADS/SED

Project Challenges

• Key requirements not defined
– Requirements for state support 

unknown
– Requirements for main functionality 

finalized after contract awarded
– Ongoing regulation and policy 

changes led to changes in 
requirements outside project 
control

• Compressed timeframe
– Only 3.5 years to perform 

acquisition, and development and 
testing

• Study showed pre-solicitation 
planning activities required could 
last more than 2 years

– States didn’t have to declare their 
intent until 10 months prior to 
delivery
• Didn’t know size of users base



30
SAD/ADS/SED

Main points of failure

• Issued task orders before key 
requirements were defined

• Implemented Agile without 
preparation 
– No training or previous experience 
– No adapted procurement strategy
– No single customer voice
– No risk analysis 
– Inadequate milestone review plan and 

action
• Delayed or skipped some reviews
• Began testing and validation only 

1 month before release
• Cost reimbursed contracts

– Created additional risk

– Had to pay even when functionality 
not delivered

– Increasing fees 
• No action when performance issues 

arose
– Resulted in the release of non verified 

product
• Lack of proper oversight

– Confusion about who had authority to 
approve contractor requests to extend 
funds

– Limited steps to hold contractor 
accountable

– Incomplete acquisition strategy
– Required quality assurance plan not 

used



31
SAD/ADS/SED

Application of Software SE study to case study
Lessons Learned

• They leapt into Agile without proper preparations
– Must train all involved in Agile process
– Must evaluate if Agile if right for the project
– Must alter acquisition process to fit Agile

• Includes new risk assessment
– Must alter milestone reviews to fit project 
– Must have a single customer voice
– “Flexible requirements” does not mean undefined requirements



32

Sources & References

• “Acquisition best practices to procure IT services.” Emerging Technology Shared Interest Group. 2014.
• Dove, Rick. "Fundamental principles for agile systems engineering." Conference on Systems Engineering Research 

(CSER), Stevens Institute of Technology, Hoboken, NJ. 2005.
• Haberfellner, Reinhard, and Olivier de Weck. "Agile systems engineering versus agile systems engineering." INCOSE 2005 

Symposium. 2005.
• Huang, Philip M., Ann G. Darrin, and Andrew A. Knuth. "Agile hardware and software system engineering for innovation." 

Aerospace Conference, 2012 IEEE. IEEE, 2012.
• Lapham, M. A., et al. Agile Methods: Selected DoD Management and Acquisition Concerns, October 2011, Technical Note. 

CMU/SEI-2011-TN-002. 
• Lapham, Mary A., et al. Considerations for Using Agile in DoD Acquisition. No. CMU/SEI-2010-TN-002. CARNEGIE-

MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST, 2010.
• Modigliani, Pete, and Su Chang. Defense agile acquisition guide: Tailoring DoD acqusition program structures and 

processes to rapidly deliver capabilities. MITRE Corporation. 2014.
• Palmquist, Steve, et al. "Parallel Worlds: Agile and Waterfall Differences and Similarities." (2013).
• “Software Development: Effective Practices and Federal Challenges in Applying Agile Methods.” United States 

Government Accountability Office. GAO-12-681. 2012
• Russo et al. “Agile Technologies in Open Source Development.” 2009. IGI Global. ISBN-10: 1-59904-681-4. Available via 

the Aerospace Library (TAL) and Safari Books Online (via TAL’s subscription)
• US DoD CIO.  “DoD Open Source Software (OSS) FAQ.” Available 

http://dodcio.defense.gov/OpenSourceSoftwareFAQ.aspx
• US DoD CIO. “Clarifying Guidance Regarding Open Source Software” and appendices. 2009. Available: 

http://dodcio.defense.gov/Portals/0/Documents/OSSFAQ/2009OSS.pdf



33

Sources & References

• Warsta, J., & Abrahamsson, P. (2003). Is open source software development essentially and agile method? 3rd Workshop 
on Open Source Software Engineering, Portland, OR.

• Scacchi, W. (2002) Open source software development processes. Version 2.5. Retrieved on 14 June 2014 from 
http://www.ics.uci.edu/~wscacchi/Software-Process/Open-Software-Process-Models/Open-Source-Software-Development-
Processes.ppt

• Defense Contract Management Agency (DCMA). (2012). Earned Value Management System (EVMS) Program Analysis 
Pamphlet (PAP). Washington D.C.: Department of Defense.

• Koontz, D. (2014, February). Metrics for a Scrum Team. Retrieved September 2014, from Scrum Alliance Agile Atlas: 
http://agileatlas.org/articles/item/metrics-for-a-scrum-team

• NASA. (2009). NPR 7150.2A NASA Software Engineering Requirements. Washington D.C.: NASA.
• NASA. (2010). NPR 7120.5, NASA Space Flight Program and Project Management Handbook. Washington, D.C. NASA.
• Project Management Institute. (2014). Earned Value Management. Retrieved August 2014, from Project Management 

Institute: http://www.pmi.org/Knowledge-Center/Knowledge-Shelf/Earned-Value-Management.aspx
• Software Engineering and Software Advanced Research Lab (SESAR). (2007). Metrics for CMMI Maturity Level. Retrieved 

September 2014, from CMMI Metrics Framework: http://sesar.di.unimi.it/CMMIMetrics/index.php?id=main.htm
• Software Engineering Institute. (2014). Carnegie Mellon University. Retrieved from Capability Maturity Model Integration 

(CMMI): http://whatis.cmmiinstitute.com/#home
• The Aerospace Corporation. (2011). Aerospace Software Measurement Standard . El Segundo, CA: The Aerospace 

Corporation.
• GAO-14-694. “Healthcare.gov: Ineffective Planning and Oversight Practices Underscore the Need for Improved Contract 

Management”. July 2014
• HHS ASPE Issue Brief, “Health Insurance Marketplace: Summary Enrollment Report for the Initial Annual Open Enrollment 

Period”. May 2014
• HHS. “Healthcare.gov Progress and Performance Report”. December 2013


