

Project Hermes

"Use of Smartphones for Receiving Telemetry and Commanding a Satellite "

GSAW 2016. Session 5. 1 March 2016

Rishabh Maharaja

Principal Investigator, Concept Developer

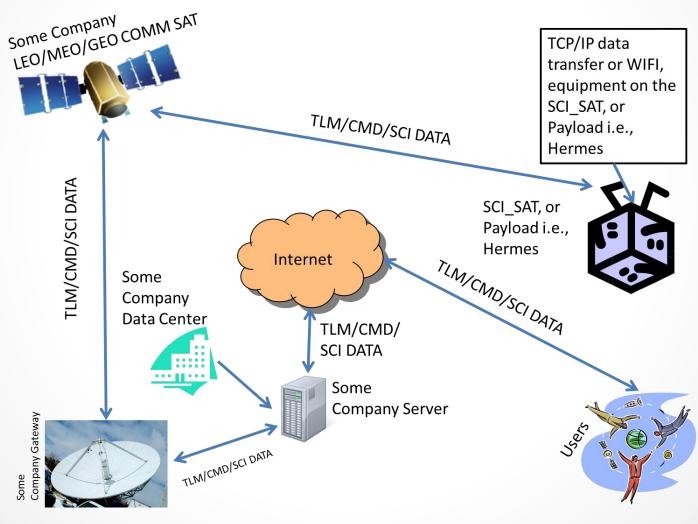
Capitol Technology University Laurel, Maryland and Honeywell Technical Service, Inc. NASA Goddard Space Flight Center Greenbelt, Maryland

rishabh.y.maharaja@nasa.gov

© 2016 by Rishabh Maharaja. Published by The Aerospace Corporation with permission.

Project History

- Project Hermes was a concept that I developed while teaching an "Intro to Space" class in the Fall of 2013 at Capitol Technology University (CTU).
- The Project Hermes payload has flown onboard (3) highaltitude balloon flights
- Quick transition from high-altitude balloon flights in 2014... to space flight in 2015
- Extremely proud of the entire Hermes team
 - Aaron Bush, Jeff Williams, Carl Hansen, Anh Ho, Carlos Del Cid, Ben Serano, Dylan Rankin, Daniel Bottner, & Angela Walters
 - I would also like to thank the RockSat-X 2015 program and NASA Wallops Flight Facility for the opportunity to fly Project Hermes into space


Project Goals

- To design and fly a mission using commercial off-the-shelf (COTS) TCP/IP Compliant equipment
- To test a TCP/IP based bus concept using TCP/IP protocol
- To simply use a web-based interface to send commands and receive telemetry, both on the ground and on the payload/satellite
- To Communicate via commercial satellite networks

The Idea...

- 1. Pair a smartphone to a communication satellite network compatible Wi-Fi hotspot device, this would create a WIFI Bus between the communication system and the smartphone
- 2. Use app stores to download apps that would allow the team to:
 - a) Send commands to the smartphone in flight
 - b) Receive Telemetry from the smartphone in flight
 - c) Use the various apps as the flight software for the smartphone in flight
- 3. Use commercially available apps such as Gmail as our ground system for receiving telemetry and commanding

Concept Diagram

Sub-Orbital Flight

August 12th, 2015 at 06:04 EDT

NASA's Wallops Flight Facility

Total Flight Duration: 15 Minutes

Maximum Altitude Reached: 155.6 KM

Sub-Orbital Flight Achievements

- 1. Established a Wi-Fi network in space for system bus use
- 2. Paired an Android smartphone in space to an Iridium-based Wi-Fi hotspot device
- Used & programmed various applications available on the Google Play store to function as our Flight Software (FSW)
- Used TCP / IP devices (smartphone & smartwatch) on the ground as our Telemetry & Command System
 - o Smartwatch was used by my student (Aaron Bush)!

Project Hermes Components - Flown on 8/12/15

LG Optimus G (Android Smartphone)

Iridium Go (Wi-Fi Hotspot Device)

USB Battery Pack (2-port), 9V Lithium Batteries

Arduino

Yoga Mats, Kapton Tape, Silicon RTV, DB-15 Power Pin

USB Cables, TNC-M RF Cable

Relay Circuit

Aluminum Boxes

Project Hermes. GSAW 2016. 1 March 2016

© 2016 by Rishabh Maharaja. Published by The Aerospace Corporation with permission.

Links to Videos from our YouTube channel

- <u>https://www.youtube.com/watch?v=zGcHYIxdTc4</u>
 Shows launch as seen from my PI's phone)
- <u>https://www.youtube.com/watch?v=R7cdO9cPnC</u>
 <u>Y</u>
 - (Video recorded by Colorado University Boulder; you can see our planet Earth, rocket parts, our antenna)
- <u>https://www.youtube.com/watch?v=G548GDgeWj</u>
 <u>4</u>
 - (Video from our MOC (a tent on the launch pad and our victory cheer while calling the mission sequence))

Facts to be Considered...

- The main goal was to demonstrate a proof of concept by downlinking the simplest of data
- We were expecting data at 3 min and 30 seconds into flight, and as is obvious from our video of the launch, that's <u>EXACTLY</u> when we received the data!
- We proved that one can use Wi-Fi for a system bus on a space-bound payload
- <u>Note:</u> One *incredible* feature of our versatile system is that our Mission Operations Center (MOC) was nothing more than a camping tent and a few wireless devices

Types of Data Received

•••====> Verizon LTE 8:32 PM 7 \$ 39%	•••• Verizon LTE	8:32 PM	1 \$ 39% ■)		8:32 PM	1 \$ 39%∎)
<inbox ^="" td="" v<=""><td>< Inbox</td><td></td><td>^ V</td><td></td><td>a iridium.com</td><td>c</td></inbox>	< Inbox		^ V		a iridium.com	c
From: 881623488440@ms > Hide To: ccprojecthermes@gmail.com >		3488440@ms nes@gmail.com>	. > Hide	···· iridiun Everywhe		0, ≡
SMS from 881623488440@msg.iridium.com August 12, 2015 at 6:07 AM A	August 12, 2015 I am here Lat+ 76.205100 Alt http://map.irid	-37.461700 Lon t-11824ft Iridiun lium.com/m? D&lon=-76.2051	- 1 Loc		atellite	Onir
	GPS Data not accurate due to COCOM Limits			Williamsburg Cape Courtes Vorktown + Newport/News - Hampton - New Location - Longitude		
	P D			$\langle \rangle$	Ć (1 0

Project Hermes. GSAW 2016. 1 March 2016

Project Hermes Payload (Pre-Launch)

- The goal of the project was not to test security features, but there are ways to provide internet security to this bus concept
- Project Hermes did fly a software-based firewall; it wasn't activated, but we did fly it
- The team could have installed security based apps such as McAfee on the Android phone
- The team could have also installed malware detection software on the phone

Project Hermes. GSAW 2016. 1 March 2016

© 2016 by Rishabh Maharaja. Published by The Aerospace Corporation with permission.

Thoughts on the TCP/IP Bus

A Non-IP Bus issue

- Each satellite is typically custom built and has many proprietary interfaces
 - Usually bus/parts/instruments are provided by different vendors
 - Not all ICD documents are successful at uncovering and/or documenting each hardware issue
 - Issues are usually found much later in the game during integration and testing, while the instrument or system is not in the hands of the vendors

Benefits of the TCP/IP Bus

- A Common IP interface could reduce costs, as well as reduce required design, build, & test time for the satellite
- A Common IP interface would also allow for each part/instrument to have a more plug-andplay type of capability, much like a common printer
- Testing can begin while the parts/instruments are still in the possession of their respective vendors
 - This allows simulation with the actual satellite itself

Communications Advantages of Systems Like Project Hermes

- FOT can get satellite health & safety data at anytime
- Since the data is via the internet, we can use secure servers to monitor the satellites from anywhere
 - Depending on the communication system of choice, one is not required to wait for a ground-based contact
- Scientists can have direct access to the satellite for science requests
 - Science data can be transferred directly to a cloud server from the satellite itself
- Depending on usage, the project can choose Iridium plans ranging from \$50-130/month (this charge **includes** the use of Iridium gateways)

Track a CubeSat....Take a Hybrid Approach?

- CubeSats are hard to track when initially launched, so concepts developed by Project Hermes could be used onboard a CubeSat to:
 - Send out beacons that may include: GPS & basic HK data
 - These messages don't require a conventional T&C, therefore, the operator can be **anywhere**
- "Big Banner" satellites can fly a Project Hermes type system as a redundant COMM or instant alert for the FOT
 - Various communication satellite networks available based on desired altitude and inclination, i.e., Iridium, Globalstar, Inmarsat, Thuraya
- Also good for suborbital and or high altitude balloon flights

The Way Ahead...

Seeking a US Patent and wanting to:

 Develop a satellite system bus and set of components that are TCP/IP compliant

 Develop flight software that will support TCP/IP compliant bus/satellite hardware

 Develop a TCP/IP compliant and Webbased T&C system

The End...

- Thank you for your time
- Any questions? Comments?

