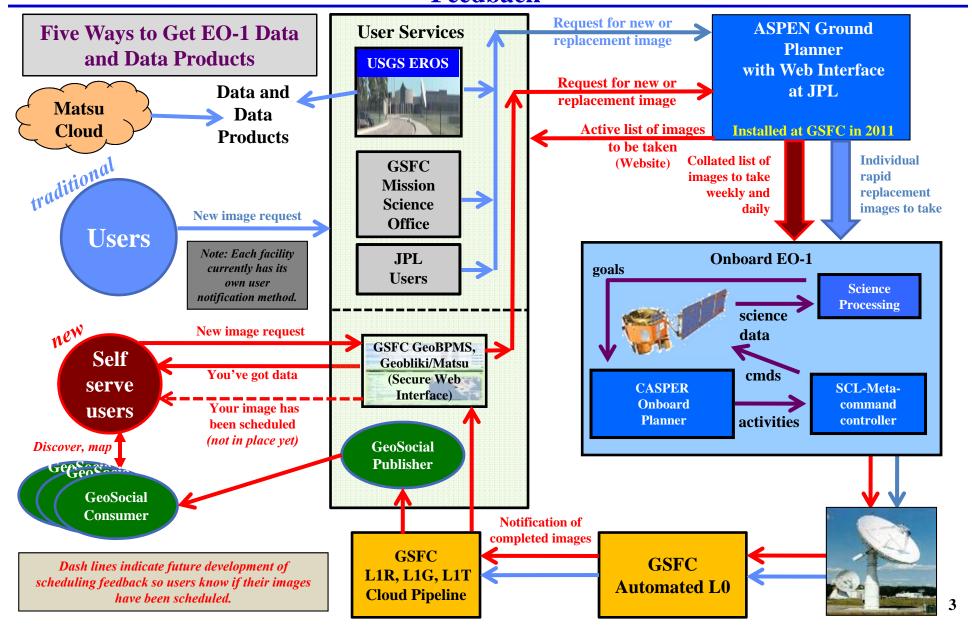
Autonomous Closed-loop Tasking, Acquisition, Processing, and Evaluation for Situational Awareness Feedback

Presented at GSAW 2016
By Stuart Frye, SGT/GSFC/NASA
(stuart.frye@nasa.gov)
2 March 2016



Co-authors: Dan Mandl (NASA), Pat Cappelaere (Vightel)

Overview of Features

- Closed loop satellite autonomy closes the gap between the users and the assets
- Base layer is distributed architecture based on GMSEC bus so each asset still under independent control
- Situational awareness provided by middleware layer through common application programmer interface to GMSEC components developed at GSFC
- User setup their own tasking requests, receive views into immediate past acquisitions in their area of interest, and into future feasibilities for acquisition across all assets
- Automated notifications via pub/sub feeds returned to users containing published links to image footprints, algorithm results, and full data sets
- Theme-based algorithms available for on-demand and processing

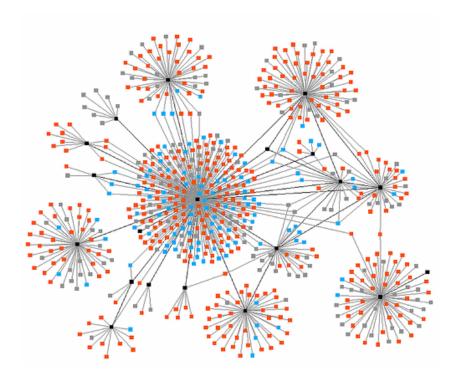
Example Ground System Architecture (NASA EO-1) for Autonomous Closedloop Tasking, Acquisition, Processing, and Evaluation for Situational Awareness Feedback

Distributed Architecture on GMSEC Bus

- Middleware services provide rest-ful API (not SOAP-WSDL interface)
- Nothing is centralized so no single point of failure
- Based on free-ware or open-source tools under the hood so minimal license fees
- Client workflows are orchestrated in javascript or Python using browser on user platform
- Servers run on Linux

Single Sign-On to All Middleware Services

- Security for access to services should be single sign-on handled by a distributed network of security servers that allow users to sign on once, then as they access other services in the network, those services verify with the security servers that the user is allowed to access and perform certain functions.
- This should apply not only to human interactions with the system, but with delegated authority to have machine-to-machine automated interactions on the users behalf.


Welcome To the NASA GSFC SensorWeb OpenID Server (BETA 1)

Now supporting <u>Verisign Identity Protection (VIP) Services</u> for two-factor authentication

Please get your own credentials ASAP for a more secure access to the system

Building Securely The GEOSS Federation One Node At a Time...

Please Login or New Account

Target Identification and Submittal

- Users setup their own target requests using either coordinate entry, map box, or geonames (similar to an archive search tool)
- Users view their target requests as footprint locations on a map tool
- In-view dates and acquisition times for the target requests are automatically generated as feasibilities for all satellite assets going out at least 5 days
- Total column cloud predictions for each target in-view time and footprint location automatically supplied and updated every 3 hours going forward about 3 days
- Users are made aware of asset engineering activities that could block their request submittal from being executed
- Users view competing requests from other users to be able to judge likelihood of acquisition in support of task submittal decision making
- Near-term target requests are submitted to the scheduling system of each asset and the status of each request is maintained and visible to the users (status = submitted, scheduled, uplinked, acquired, downlinked, posted)
- Setup of a user target request automatically generates a subscription to receive notifications of data receipt for all images acquired in that target request area
- (See next page for example display)

Sample User Target Setup

logout | help | main | users | scenarios | requests | tasking | schedule | pending | criteria

Scenario/Cam	naign Entries												Search	(C) Orex	ate New
			Theme												
South America Science 2016	Content South America Science 2016			sfrye	Scenario Reque	ists tion site , La Ciguena	Santa Fe, Sino	O1/26/2016 02:48 PM	Updated At 01/26/2016 02:48 PM	Weight 0.0	Edit	Delete	Show		
Kwando River Blockage Kwando River Blockage Namibia/Angola border			flooding	sfrye	Kwando River B	lockage		01/19/2016 01:52 PM	01/19/2016 01:52 PM	0.0	Edit	Delete	Show		
Argentina Floods Charter Activation for Argentina Floods 2016010 20160105			flooding	sfrye	Formosa Argent	tina 20160105 Chart	er, Asuncion A	01/06/2016 07:07 PM	01/06/2016 07:07 PM	0.0	Edit	Delete	Show		
															×
Scenario/Campaign Taski	ng Requests for Argentina Floo	ods 20160105											Search	⊕ Cre	ate New
ld Name		Content		Ge	eolocation	Daynight Time	Center	Duration	Scenario Fe	asibilities S	cenario Requests Task	(S			
5307 Asuncion Argentina 20160105 Charter Asuncion Argentin		Asuncion Argentina 20160	105 Charter	-2	5.3, -57.78	day time	Hyperion	125	**	-				Delete	
5306 Formosa Argentina 20160105 Charter Formosa Argentina 20160:		105 Charter	-2	6.158, -58.265	158, -58.265 day time Hyperion 12s , ,				-			Edit	Delete	Show	
2 Found															
Mississippi River 20151229 20151229			flooding	sfrye	Cape Girardeau	Cape Girardeau MO 20151229, Vicksburg MS 20151229, St. Louis 20151229,					12/30/2015 02:15 PM	0.0	Edit	Delete	Show
Garland Texas 20151227	Garland Texas 20151227	flooding	sfrye	Garland Texas 2	0151227		12/28/2015 03:19 PM	12/28/2015 03:19 PM	0.0	Edit	Delete	Show			
Holly Springs MS 20151223	Holly Springs MS 20151223	flooding	sfrye	Holly Springs/As	shland MS 20151223	3, Booneville N	12/24/2015 07:28 PM	12/24/2015 07:28 PM	0.0	Edit	Delete	Show			
Shenzen China Landslide	Shenzen China Landslide 201	landslide	sfrye	Shenzen China I	Landslide20151221		12/21/2015 09:26 PM	12/21/2015 09:26 PM	0.0	Edit	Delete	Show			
Phillippines Typhoon Melor	Phillippines Typhoon Melor 2	flooding	sfrye		hoon Melor 201512 hoon Melor Manila	14, Phillippine:	12/14/2015 02:07 PM	12/14/2015 02:07 PM	0.0	Edit	Delete	Show			
Nevado del Ruiz, Colombia	Volcan Nevado del Ruiz activi	volcano	eanderso	n Nevado del Ruis	sactivity		12/10/2015 08:13 PM	12/11/2015 06:04 PM	0.0	Edit	Delete	Show			

Awareness for Timing of Delivery

- Users know in advance on a constantly updated basis exactly when to expect data from the next day's acquisitions from all satellites
- Image delivery availability and quality assessment used as input to the planning/scheduling for the following day's collections
 - For example, Landsat-8 data is acquired and assessed in time to affect decision about tasking for next EO-1 in-view target-by-target

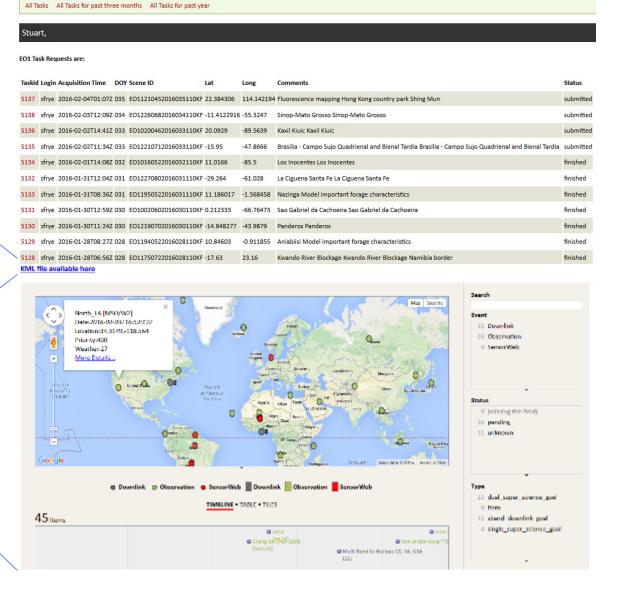
logout | help | main | users | scenarios | requests | tasking | schedule | pending | criteria

Scenario/Campaign Tasking Opportunities

Search Opdate Forecast

Scenario Name	Theme	ld	Request	User	Org	Asset	Instrument Center	Date	Weather	Score	Tasks	Veto					
Belm Germany	technology	79218	Osnabrück Germany	bsiegmann	IGF Osnabrueck	EO-1	hyperion	2016-02-03T08:35:00Z	21	0	EO11960242013112110KF(NOT FOUND), EO11960242013125110KF(rejected), EO11960242013159110KF(NOT FOUND)	-	Veto	Task	Edit	Delete	Show
West Africa - Rangeland	tropical	79599	Nazinga	Sumisu	UNKNOWN	EO-1	hyperion	2016-02-03T08:46:00Z	0	16		-	Veto	Task	Edit	Delete	Show
West Africa - Rangeland	tropical	79276	Aniabiisi	Sumisu	UNKNOWN	EO-1	hyperion	2016-02-03T08:47:00Z	0	16		-	Veto	Task	Edit	Delete	Show
South America Science 2016	air	79397	Santarem- Km67-Primary Forest	sfrye	SGT	EO-1	hyperion	2016-02-03T12:07:00Z	90	15		-	Veto	Task	Edit	Delete	Show
South America Science 2016	air	79370	Sinop-Mato Grosso	sfrye	SGT	EO-1	hyperion	2016-02-03T12:09:00Z	32	15		-	Veto	Task	Edit	Delete	Show
Argentina Floods 20160105	flooding	79083	Asuncion Argentina 20160105 Charter	sfrye	SGT	EO-1	hyperion	2016-02-03T12:13:00Z	98	15		-	Veto	Task	Edit	Delete	Show
Argentina Floods 20160105	flooding	79072	Formosa Argentina 20160105 Charter	sfrye	SGT	EO-1	hyperion	2016-02-03T12:13:00Z	100	15		-	Veto	Task	Edit	Delete	Show
South America Science 2016	air	79361	La Ciguena Santa Fe	sfrye	SGT	EO-1	hyperion	2016-02-03T12:14:00Z	13	15		-	Veto	Task	Edit	Delete	Show
Hong Kong, Shing Mun	tropical		Fluorescence mapping	syedirteza	UNKNOWN	EO-1	hyperion	2016-02-04T01:07:00Z	42	0		-	Veto	Task	Edit	Delete	Show
South America Science 2016	air	79415	Panderos	sfrye	SGT	EO-1	hyperion	2016-02-04T11:08:00Z	70	15		-	Veto	Task	Edit	Delete	Show
South America Science 2016	air	79434	Eucaliptus Sao Paulo	sfrye	SGT	EO-1	hyperion	2016-02-04T11:10:00Z	99	15		-	Veto	Task	Edit	Delete	Show
South America Science 2016	air	79476	Atlantic Forest Sao Paulo	sfrye	SGT	EO-1	hyperion	2016-02-04T11:10:00Z	79	15		-	Veto	Task	Edit	Delete	Show

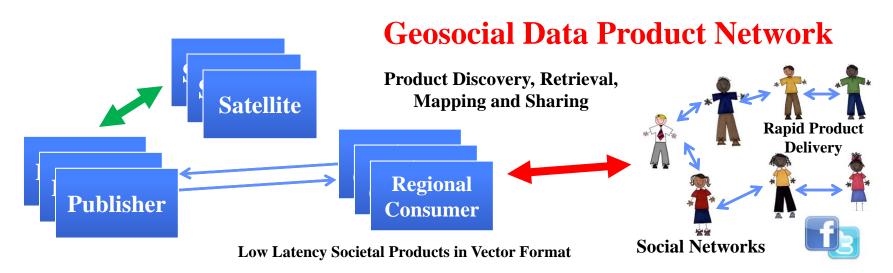
Rapid Assessment of Recent Images


- User is provided rapid assessment immediately after new images have been taken to visualize the image quality/cloud cover
 - Geolocated scene overlays of recently acquired data are published and notifications automatically fed to users in a compact file format that is appropriately named (asset ID, date, time, center-point coordinates, relevant geonames)
- Users are sent the image overlays and combine them with planned future footprints without having to search for them
 - Each asset posts image data in a centralized system, but users have particular information delivered to their consumer client on a distributed basis from regional product publishers
- The users can track which targets have been acquired vs. which ones aren't yet including not only the user's own target requests, but all images in the users' area of interest regardless of who submitted them
 - If an image was just taken of an area that fulfills the needs of some other user that was about to submit it for scheduling, then that user doesn't have to submit their request

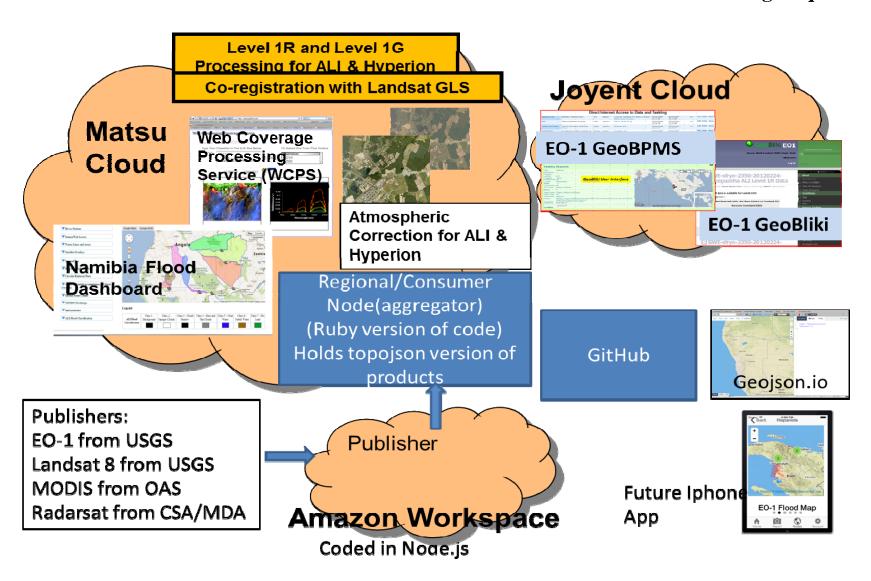
Recent Acquisition Notification Process

EO1 Task Requests

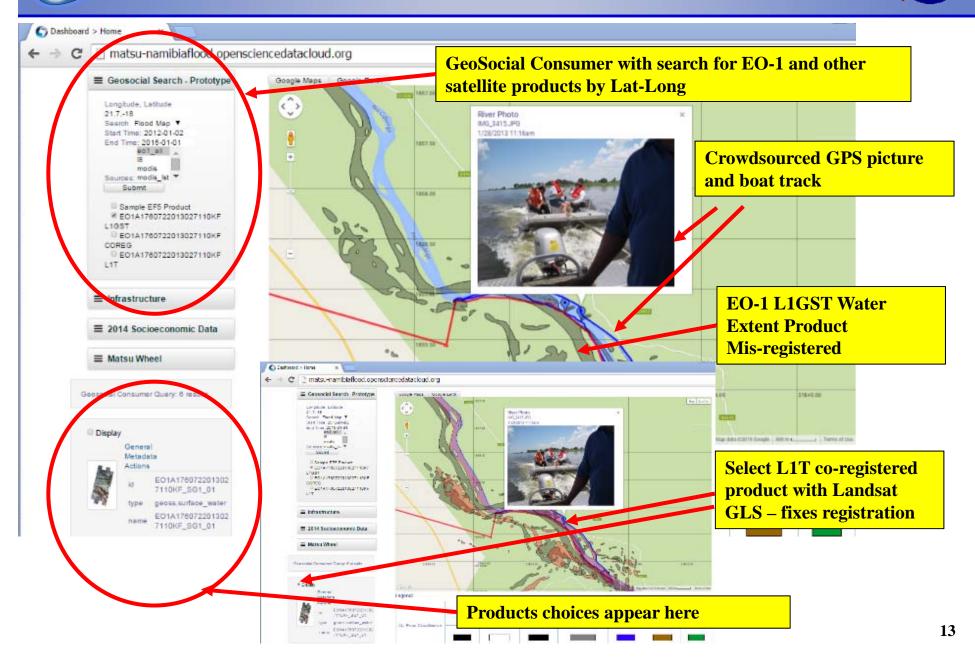
Acquisition notifications are sorted with links to products


Upcoming collections are displayable on a map and on a timeline

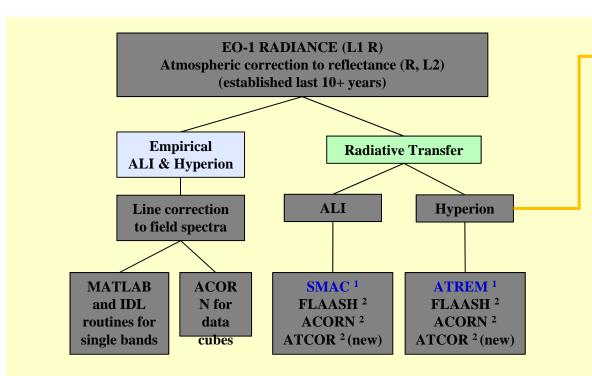
Autonomous Delivery of Recent Acquisitions to Regional Publishers for Browse Imagery and Classification/Detection Product Processing


Regional GeoSocial API Publisher/Consumer Network (HTML/HTTPS)

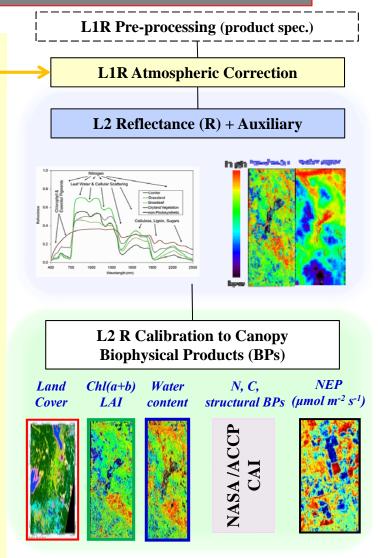
This is a *NEW* method to distribute EO-1 and other satellite data products in a compact vectorized format (small data size TopoJSON). The vision is to have a network of regional publishers automatically pre-generate specific satellite data products for a region and then make them available to all consumers in that region. The user obtains the data product by doing a Web browser query based on latitude-longitude. The publisher then provides the user a list of the available products in the region. The user clicks on the ones he/she wants to map and the vectorized data is downloaded to their computer, tablet, or smartphone for display. It is built in to share the products via Facebook/Twitter or other social media with a single click.


Cloud-based Processing and Delivery Overview

Distributed Cloud Architecture for EO-1 Data Product Distribution and Tasking Requests

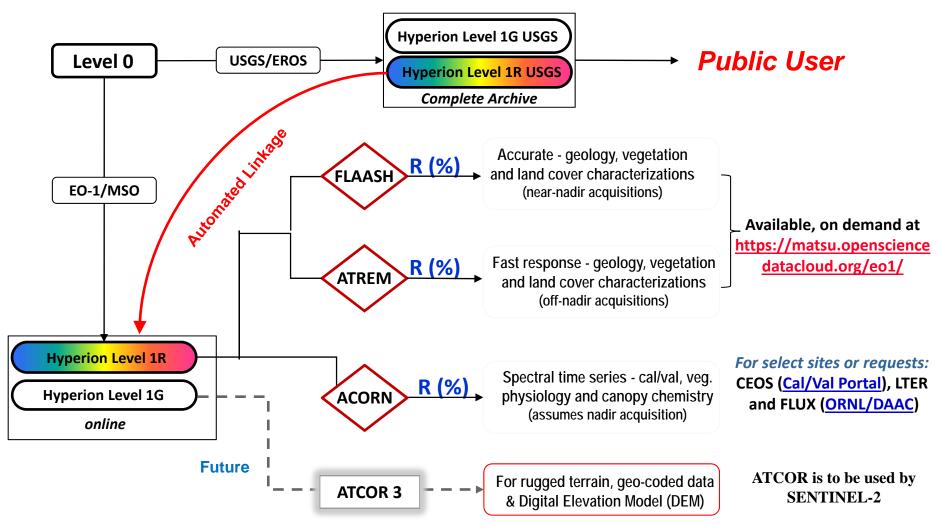

Distribution Channel for Recently Acquired Products

GeoSocial API (architecture for discovery, retrieval, mapping, evaluation, and sharing)



User Controlled On-Demand Post Processing for Detailed Evaluation

Reflectance Processing Protocols Established for ALI and Hyperion Level 2 Products



- 1. 6S: Second Simulation of a Satellite Signal in the Solar Spectrum. Vermote, E.F., D. Tanre, J.L. Deuze, M. Herman, and J.J. Morcrette (1997b). Second simulation of the satellite signal in the solar spectrum, 6S: An overview, *IEEE Transactions on Geoscience and Remote Sensing*, 35:675–68.
- 2. MODTRAN. Berk, A., G.P. Anderson, L.S. Bernstein, P.K. Acharya, H. Dothe, M.W. Matthew, S.M. Adler-Golden, J.H. Chetwynd, Jr., S.C. Richtsmeier, B. Pukall, C.L. Allred, L.S. Jeong, and M.L. Hoke (1999). MODTRAN4 Radiative Transfer Modeling for Atmospheric Correction, SPIE Proceeding, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Rasgarch III. Volume 3756



Algorithms for Atmospheric Correction Processing Available for On-demand User-controlled Execution

Hyperspectral Level-2 Surface Reflectance Products

Coordination of Satellite Acquisitions with Flight Campaigns Example: HyspIRI Preparatory Airborne Campaign

Objectives:

 Acquire contemporaneous satellite images over flight boxes

Tactics:

- Satellite in-views by date and time for each box are visible to the flight team along with cloud predictions and other constraints during morning flight meeting
- Which flight area is to be flown today is identified in that meeting 4-5 hours prior to aerial lift-off based on cloudiness, satellite inviews, and engineering considerations
- Once flight box is identified, satellite target request for the selected box needs to be submitted, scheduled, uplinked, and executed within 4-5 hours to acquire data coincidentally with flight

Results:

 Maximum number of contemporaneous satellite and aerial images have been acquired

Thank You! stuart.frye@nasa.gov