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Background

NASA has historically focused on systematic capture and stewardship
of data for observational systems

— Limited use of advance computational technologies to support scientific
inferences

Increasing “big data” era is driving needs to

— Scale computational and data infrastructures

— Support new methods for deriving scientific inferences

— Shift towards integrated data analytics

— Apply computational and data science across the lifecycle

NASA Advanced Information Systems Technology (AIST) program
Initiated a study of needed data and computational science techniques
across the data lifecycle and have made some key recommendations

— Leverages the NASA Office of the Chief Technologist Roadmap for
Modeling, Simulation and Information Technology (2015)
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Wy Data and Computational Science
Across the Data Lifecycle

Architectural considerations/tradeoffs for integrating the entire data
lifecycle

Onboard

— Enable data reduction and triage close to the sensor/instrument
— Manage bandwidth for communicating results

Scalable Data Management

— Capturing well-architected and curated data repositories based on well-defined
data/information architectures

— Architecting automated pipelines for data capture

Scalable Data Analytics
— Access and integration of highly distributed, heterogeneous data
— Novel statistical approaches for data integration and fusion
* Including sampling strategies
— Computation applied at the data sources
— Algorithms for identifying and extracting interesting features and patterns
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Emerging Solutions

* Onboard Data
Products

* Onboard Data
Prioritization

* Flight
Computing

(1) Too much data, too fast;
cannot transport data
efficiently enough to store

Observational Platforms

/Flight Computing
Massive Data Archives and

Big Data Analytics

Emerging Solutions
e Low-Power Digital
Signal Processing

Emerging Solutions
e Distributed Data

» Data Triage Analytics
e Exa-scale * Advanced Data Science
Computing : Methods
* Scalable Computation
and Storage
(2) Data collection capacity at the P
instrument continually outstrips data (3) Data distributed in massive
transport (downlink) capacity archives; many different types of
measurements and observations

Ground-based Mission Systems

Concept included in OCT TA-11 Roadmap (2015): 11.4.1 — Mission, Science, Engineering Data Lifecycle



ASA Earth Science Data Pipeline Today:
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Emerging Challenges as Data
Increases

* Reproducibility

e Uncertainty management

« Data fusion (including distributed data)
e Data reduction

« Data movement

e Data visualization

e Cost

 Performance
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Use Case

Climate

Description

Formulate hypotheses from observed empirical

Driving Use Cases

Data Science
Challenge

Highly distributed

Enabling Mission/ Capability

CMIPB will move towards

Modeling relationships; data sources; fusion exascale archives requiring
Simulate current and past conditions under those of different new approaches to evaluating
hypotheses using climate models; Test hypotheses | observations; moving | models relative to
by comparing simulations to ocbservations; computation to the observational data.

Evaluate uncertainty of predictions originated from data; data reduction
statistical sampling of models and observations.

Satellite Missions such as MI-SAR and SWOT will generate Massive data rates, NI-SAR and SWOT require

Missions massive observational data. However, they are data movement new approaches for
have different architectural patterns including challenges, computation, data movement,
compute intensive, data intensive, heterogeneous, computational data archiving and distribution,
etc. scalability, archiving analytics.

and distribution;
onboard processing
for data
reduction/analysis;
high-volume data
transfer for ground
processing

Applications | Understanding groundwater dynamics on a Distributed Integration of data from

- Hydrology regional scale using measurements from satellite, computation; highly PALSAR-2, Sentinel, Grace-

(Central airborne and in-situ measurements. Compare distributed data FO, ASQO, and SMAP. Scale to

Walley of against predictive models. sources; data fusion support NI-SAR and SWOT.

California) of multiple products; Comparison against models.

massive new satellite Requires new architectural
observations. approaches for distributed data
analytics.

Airborne Airborne missions tend to be much more agile and On-demand Current missions such as

Missions on-demand. Integrating this into a data ecosystem architectures; CARWVE and Airborne Snow

provides new opportunities to quickly generate and
understand various measurements.

distributed data
sources; on-the-fly
data processing;
onboard processing
for data
reductionfanalysis;
high-volume data
transfer for ground
processing

Observatory; Future such as
proposed EVI-3 and ASCO
follow-on missions
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Limitations and Gaps Across the
Space Data Lifecycle

* Flight Computing, Ground Systems, Archiving/Distribution, and Analytics are not
architected into a scalable big data system...

» Problems across the data lifecycle:

Data Generation: Limited onboard computing (or computing at sensor) for planning
Data Triage: Limited onboard triage and processing
Data Compression: Limited intelligent data reduction

Data Transport: Dependent on bandwidth capabilities; challanges in moving and
distributing massive data

Data Processing: Ground systems and ground processing have limited support for
dynamic workflows, scaling to large-scale environments (clouds, HPC), integrating
intelligent discovery algorithms, etc. Processing disconnected from science analysis.

Data Archiving: Scaling the capture, management and distribution of data; distributed
archives; limited computational capabilities; different models, formats, representations
of data.

Visualization: Limited visualization capabilities for massive data; challenges in
presenting massive data to users

Data Analytics: Limited analytics services; generally tightly coupled to DAACs; limited
cross-archive, cross-agency integration; limited capabilities in data fusion; statistical
uncertainty; provenance of the results
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Onboard

Ground Systems

Archive Systems

Analytics

Across Lifecycle*

Limited onboard computation
including data triage and data
reduction. Investments in new
flight computing technologies for
extreme environments.

Rigid data processing pipelines;
limited real-time event/feature
detection. Support for 500 TB
missions.

Support for 10 PB of archival data;
limited automated event and
feature detection.

Limited analytics services; generally
tightly coupled to DAACs; limited
cross-archive, cross-agency
integration; limited capabilities in
data fusion; statistical uncertainty;
provenance of the results

Increase onboard autonomy and
enable large-scale data triage to

support more capable instruments.

Support reliable onboard
processing in extreme
environments to enable new
exploration missions.

Increase computational processing
capabilities for mission (100x);
Enable ad hoc workflows and
reduction of data; Enable realtime

triage, event and feature detection.

Support 100 PB scale missions.

Support exascale archives;
automated event and feature
detection. Virtually integrated,
distributed archives.

Analytics formalized as part of the
mission-science lifecycle;
Specialized Analytics Centers
(separate from archives);
Integrated data, HPC, algorithms
across archives; Support for cross
product data fusion; capture of
statistical uncertainty; virtual
missions.

Derived from OCT TA-11 Roadmap (2015)

omputational Capability Needs and Gaps

Onboard computation for airborne
missions on aircraft; new flight
computing capabilities deployed for
extreme environments; use of data
triage and reduction for high
volume instruments on satellites.

Future mission computational
challenges (e.g., NI-SAR); support
more agile airborne campaigns;
increase automated detection for
massive data streams (e.g.,
automated tagging of data).

Turn archives into knowledge-bases
to improve data discovery.
Leverage massively scalable virtual
data storage infrastructures.

Shift towards automated data
analysis methods for massive data;
integration of data across satellite,
airborne, and ground-based
sensors; systematic approaches to
addressing uncertainty in scientific
inferences; focus on answering
specific science questions.
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Technology Name

ory

Data Lifecycle Area

(s)

toposed Technology Areas

Description

Big Data Architecture Cross-Cutting Definition of a scalable data big data lifecycle architecture for earth observing
Earth Science Remote systems identifying how Big Data can scale from onboard computing to data
Sensing analysis to increase science yield.

Technologies

Big Data Information Cross-Cutting Advanced semantic technologies for defining, deriving, and integrating
Models and Semantics heterogeneous ontologies and information models as applied across the entire
data lifecycle (onboard, ground-based operations, archives, analysis)
Onboard data science Data triage Onboard data science methods for real-time event detection, and planning.
methods for data triage
Onboard data science Data Compression Onboard data science methods for data reduction.
methods for data reduction
Massive Data Movement Data Transport Massive data movement technologies for ground-based networks from

operations through analysis

Real-time ground-based
data science methods

Data Processing

Real-time ground-based data science methods for data reduction and real-time
event detection for massive data streams as part of the data lifecycle
architecture.

Open source data
processing frameworks

Data Processing

Open source data processing and workflow frameworks that can massively
scale to computational infrastructures (HPC, public cloud, etc.) handling large
data streams, products, including near-real time constraints, as part of the data
lifecycle architecture.

Reusable data science
methodologies for
missions and science

(1) Data Processing; (2)
Data Analytics

Development of reusable data science methodologies for analysis of data on
the ground as part of the data lifecycle architecture. This includes on-demand

data analytics for massive data repositories.
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Proposed Technology Areas (2)

Federated data access

Data Archives

Federation of data access from distributed repositories as part of the data
lifecycle architecture, moving towards on-demand distributed data analytics

Massive Data Distribution

Data Archives

Massive data distribution for large-scale repositories and archives including
methods for data reduction, computation, etc., as integrated, on-demand data
analytics.

Intelligent search and

(1) Data Archives; (2) Data

Provide methods for intelligent search and mining of massive data. This may

mining Analytics include integration of on-demand analytics to perform deep searches.
Visualization of massive Visualization Visualization of massive data sets including data reduction methods that are
data sets driven by domain.
On-demand distributed Data Analytics On-demand data analytics that can integrate data from archives, repositories,
data analytics etc., applying data science methods (data reduction, fusion, feature detection,
etc.) provided through a computational infrastructure

Distributed data analytics Data Analytics Analysis of data across distributed archives to support Earth system science

Uncertainty Quantification; Data Analytics Management of uncertainty in scientific inferences as part of a measurement

Measurement Science

science strategy for data fusion and data science

Open source data

(1) Data Archives; (2) Data

Open source data management/science frameworks that can massively scale

management/science Analytics to handle and manage large data streams, products, including near-real time
frameworks constraints, as part of the data lifecycle architecture, for archiving and analytics
as part of a big data cyber-infrastructure.
Computational (1) Data Processing; (2) | Computational Infrastructures to scale data analytics using HPC and public
Infrastructures Data Analytics cloud. This includes on-demand massive HPC and storage for integration to

drive analytics.
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Onboard Cross-Cutting
e Data Triage e  Data System Architectures
Information Architectures

Data Reduction

Major role
for Cloud as a
platform

Data
Science
Infrastructure
(Data, Algorithms,
Machines)

Data

Acquisition
and
Command

Decision
Support

Ground System Data System Data _Anglvtlcs and Viz _

e Real-Time Data Triage e Open Source Data Management *  Distributed Data Analytics

e Reusable Data Science Methods /Processing Frameworks ¢ On-d.emand computation

e On-demand workflows, computation ® Data Movement . Intelllgept search a_n_d mining

e Integrated Data System Capabilities ®  Federated Data Access e Uncertainty Quantification

e Scalable Computation and Storage e Visualization of massive data sets



Cloud Computing: Enabling the
Data Ecosystem

« Aplatform for Data and Computational Science
— Ground systems
— Archive systems
— Data analytics

* Delivering data and computational services
— APIs for data access
— PGEs for data processing
— Algorithms for data integration within and across systems
— Algorithms for reduction, classification, event detection, etc

« Scalability on-demand
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Selecting Cloud Topologies for Scalability

e DAWN (Distributed Analytics, Workflows and Numeric) is a model for simulation
and optimization of system architectures for intensive data processing
e Particularly suited to analyze the deployment of a processing pipeline on the Cloud:
» Can predict application performance as a function of allocated Cloud resources
» Can “score” different Cloud topologies (for same resources) based on
performance

EDRN Example: duration of CPTAC
data processing pipeline versus
number of processing nodes

-> conclusion: allocate 18 nodes,
no more gain after that

Climate Example: centralized vs
distributed architecture for
comparing models and observations
as a function of network speed ->
conclusion: distributed architecture
is more efficient, more so for slower ==
network and less powerful servers

¢e0+ | wl




Key Recommendations

Shift from ad hoc investments across the mission and science data lifecycle to
an integrated architecture where technology investments fit into a broader
capability to enable earth system science.

— Big Data Architectures should be modeled and assessed overall to address and plan

technology capabilities and improvements to ensure that architectural support for
science activities can scale and meet performance, cost, and uncertainty goals.

— Architectures should enable flexible and transparent tradeoffs of where to compute
including improved integration of HPC and data infrastructures.
Formalize data analytics as a first class capability across the data lifecycle

— Shift from a stewardship model to a data-driven discovery model where both
stewardship and data discovery are enabled through a systematic computational
infrastructure.

— Data discovery methods should be applied across the entire data lifecycle to support
scalable science activities at each point, sometimes automated, from onboard
computing, to data processing and archive, to analysis and discovery.

Computation and data science should play an important role in planning new
missions including identification of how data, algorithms, and computation are to
be integrated to improve overall data discovery, reproducibility and uncertainty
management.

— New capabilities should improve reproducibility of derived scientific results.

— Derived scientific inferences should be measurable and quantifiable.

Copyright 2016 by California Institute of Technology. All Rights Reserved.



Acknowledgements

e NASAAIST Program
 JPL Data Science Working Group
* NASA OCT TA-11 Roadmap Team

See: http://ieee-bigdata-earthscience.jpl.nasa.gov/references for more
details

Copyright 2016 by California Institute of Technology. All Rights Reserved.



