Working Group Outbrief

Ground System Architectures Workshop

Ramesh Rangachar and Craig Lee The Aerospace Corporation

© The Aerospace Corporation 2017

Session 11A Session Goals

- Investigate the convergence of *Cloud Computing, Big Data*, and *Big Identity* in the context of ground systems
 - What are the key mission requirements for the adoption of cloud computing for ground systems?
 - What are the benefits and challenges to the adoption of cloud computing for ground systems?
 - What are the enablers required for cloud computing in ground systems to become a reality?
 - How does the convergence of cloud computing and big data impact ground systems?
 - How will the *convergence of "urbanized" ground systems* be affected and enabled by collaboration and federation technologies?

Big Picture Perspective: Transition of the Space Enterprise

The First 50 years... The Frontier Years

- Going where no one had gone before...
- Each mission had to develop and bring everything to that frontier
- Like building a homestead in the wilderness, each stovepiped system had to carry the full industrial base, technologies, systems development, launch, ground operations, dissemination and sustainment to the site
 - Commercial & International Space Industry
 - Pervasive open source software
 - High bandwidth networks

Enabling Technologies & Market Drivers

- Commercial Services
- Cloud Computing
- Netcentricity
- Nanotechnologies
- Horizontal industries

The Future of Space... The Urban Years

- Imagine an urban space future... A layered, plug-in architecture/infrastructure where capabilities are families of payloads that plug in to a hosting layer
- The hosted payloads plug into a cyber-protected transport layer: akin to tying into a city's roads, power, water, sewer and network grids
- Transport layers connect to a mission management layer that manages and disseminates payload data to users
- Transformation is via customizable mission payloads, commercially available buses, launch services and provisioned operations
- Organizations will need to securely collaborate in this "urban environment", i.e., share data and resources

Adapted from "Shape the Future of Space", by Dr. Jim Gee, Aerospace

Session 11A

Presenters/Panelists

Title	Presenter	Organization
Introduction	Ramesh Rangachar	The Aerospace Corporation
Container Management Systems	Ann Chervenak	The Aerospace Corporation
SCAPE Framework - Leverage Advances in Big Data to Make Multi-Sensor Data Discoverable	Josh Perrius	Booz Allen Hamilton
Hybrid virtualization for the Earth Observation Payload Data Ground Segment (PDGS)	Gioacchino Buscemi	European Space Agency
Federation Management: What It Is and Why It Is Critical to Future Ground Systems	Craig Lee	The Aerospace Corporation
Town Hall Meeting: Cloud Computing Solution for Ground Systems		

- Robust discussion on containers
 - Pros and cons of containers vis-a-vis virtual machines wrt resource consumption efficiency, security, and enabling future architectures such as microservices
- SCAPE
 - The integration of multiple open-source tools to produce a cloud-hosted "big data" capability that includes a data registry, in-memory big data processing, and complex event processing
- EO Payload Data Ground Segment
 - A ten-year journey to produce a converged physical and virtual ground system for data ingest, processing and dissemination across multiple sites
- Federation Management
 - How to securely "bridge silos" among mission partners, i.e., how to create a security and collaboration context that enables joint security policies to be defined, agreed upon, and enforced among participants

Session 11A Conclusions

- How to enable the "urbanization" of ground systems
 - Deploy missions in a complex eco-system of provided infrastructure services and mission partners
- How to migrate existing missions to the Cloud
 - How to identify common services
 - How to evaluate re-host (aka "forklift"), re-factor, versus re-build
 - Probable focus of next year's Cloud WG
- The NIST/IEEE Joint Cloud Federation WG
 - Define what federation means for the USGov
 - Identify areas of standardization
 - Produce running prototypes
 - Engagement of stakeholders and vendors will be critical!

