

A presentation to Ground Systems Architecture Workshop

Looking Beyond the Horizon

Larry James, Deputy Director

March 13, 2017

© 2017 by NASA/Jet Propulsion Laboratory, California Institute of Technology. Published by The Aerospace Corporation with permission.

A Culture of Innovation since 1936

Dawn

Juno Orbit Insertion July 4, 2016

Cassini

Curiosity's Selfie

Deep Space Network

TAT & MOS - AND A TAT TO THE AND - SATINALLY

Looking Beyond the Horizon

Upcoming Missions

InSight 2018 Launch Interior Exploration using Seismic Investigations, Geodesy and Heat Transport

Mars 2020 Payload

Mars 2020 Rover

Grace Follow-On

Launch: Early 2018

Demonstrating Advanced Measurement Techniques

Surface Water Ocean Topography

2020 Launch

NASA-ISRO Synthetic Aperture Radar

2020 Launch

Psyche: Journey to a Metal World 2023 Launch

© 2016 ASIL • Image by Peter Rubin Iron Rooster Studios

Europa: Gem of the Jupiter System

Europa Clipper & Lander 2022 & 2024 Launches

Looking Beyond the Horizon

Next Gen Ground System

Why change?

Today:

Processes from 1960's

- Hierarchical teams operating in silos Tools from early 2000's
- Voice nets and screenshots
- Web based tools and (recently) cloud data

Meanwhile:

Apple, Facebook, Google, Twitter have changed how we interact with data

A Space-Ground Integrated Model

- Smarter more capable spacecraft in conjunction with exponentially more powerful ground control systems demand an integrated systems approach to spacecraft command, control and operations
 - Future spacecraft will be more autonomous, capable of learning, thinking for themselves, processing data on board and reacting
 - Future ground systems will also have AI, machine/deep learning, virtual reality capabilities
- Must take advantage of these paradigm shifts to leverage the capabilities of both

Smarter Spacecraft

Voyager computer

 8,000 instructions/sec and kilobytes of memory

iPhone

- 14 billion instructions/sec and gigabytes of memory

Curiosity (Mars Science Laboratory) Processor: 200 MHz BAE RAD750 256 MB RAM 2 GB Flash 256 KB EEPROM

Future Concept: Titan Aerobot

- Penetrate the dense atmosphere
 - Search for complex organic molecules
- Dynamic environment/extreme distance
 - Autonomy for time critical exploration
- Robust operations under varying environmental and spacecraft conditions
 - Dynamically sense and react
 - Spacecraft focus on characterization of high priority targets
 - Rapidly select/characterize
 - Respond to events

Future Concept: Small Body Fleet

Autonomously cruise and rendezvous with small bodies with little to no intervention of teams of ground operation personnel and equipment

Data Lifecycle Model for NASA Space Missions

data transport (downlink) capacity

Ground-based Mission Systems

(3) Data distributed in massive archives; many different types of measurements and observations

Towards a Scalable, Automated Ground System Environment

Intelligent Ground Stations

Emerging Solutions

- Anomaly Detection
- Combining DSN & Mission Data
- Attention Focusing
- Controlling False Positives

Data-Driven Discovery from Archives

Data Analytics and Decision Support

Emerging Solutions

- Automated Machine Learning - Feature Extraction
- Intelligent Search
- Learning over time
- Integration of disparate data

Technologies: Machine Learning, Deep Learning, Intelligent Search, Data Fusion, Interactive Visualization and Analytics

Agile MOS-GDS

Emerging Solutions

- Anomaly Interpretation
- Dashboard for Time Series Data
- Time-Scalable
- Decision Support
- Operator Training

Emerging Solutions

- Interactive Data Analytics
- Resource Analysis of Computational Workflows
- Uncertainty Quantification
- Error Detection in Data
 Collection

SMAP Ground Automation

Pass Automation Daemon (PAD)

Description

- Automation engine
- Drives ground-based pass automation across NASA Near Earth Network (NEN)
- Integration/orchestration of project-level uplink automation, time correlation, and pass processing

Benefits

- Operational since January 2015
- Success Percentage: 99.8%
- Provides an estimated workforce savings of 3-4 FTE

Path Forward

- Missions that use NASA AMMOS for command and telemetry interface to ground stations (AMPCS) can directly inherit PAD capability
- Current missions: SMAP
- Intended missions: NISAR, SWOT

Ground Operations Tool: Machine Learning

Machine Learning/Spacecraft Telemetry Anomaly Detection

• Description

 Aids human operators by identifying and predicting anomalies more quickly, greatly streamlining mission operations

Benefit

 By reducing the time required to identify and resolve the root cause of anomalies, the spacecraft will be safer and will have more time for science operations

• Path Forward

- Developed an operational system for Curiosity mission, MARTTE (MSL Anomaly DetectoR Telemetry Tool SuitE), which is an anomaly detector system that shows mission operations staff a list of high-interest anomalous telemetry readings
 - Adapt across systems and missions

Deep Space Network (DSN) Scheduling

- Automated scheduling tool deployed for managing DSN communication services
 - Handles over 500 activities per week, 300 project service requirements, 38 project users
 - Manages timing communication windows, operation rules, hardware constraints, preferences, etc.
 - Provides collaborative environment enabling mission users to view, manage and negotiate schedule requests
- Enables a *request-driven* approach to scheduling (vs. past activity-driven approach)
- Reduced workforce from 12.5 to 9.5
 FTEs with further reductions possible

What happens if we apply modern computing practices to operations?

Integrated Operations Environment

Modern internet tools and methods can dramatically improve operations in mission control

Single Integrated, Collaborative Operations Environment

Interplanetary Internet

Enabling Future Mars Communications

Dedicated Comm Relays Extend the Internet to Mars and enable public engagement

Human and robotic users 100x todays data rates from Mars – up to 1 Gbps

Dedicated 12m Stations NASA + International partnerships

March 2

Hybrid RF/Optical Antenna Potential reuse of existing infrastructure, in development today High Performance Optical Terminal: Will be demonstrated on next NASA Discovery mission

Virtual Mars

Virtual + Augmented Reality JPLOps Lab

OnSight enables scientists to "work on Mars" together from their offices. Supported by the Mars 2020 and MSL missions, it is in use by a pilot group of scientists for rover operations. Press release: <u>http://go.nasa.gov/1RAbGpU</u>

Sidekick's goal is to augment and assist astronauts as they perform tasks onboard the ISS. Project hardware arrived on ISS in Dec 2015 and initial use is expected in early 2016. Press release: <u>http://go.nasa.gov/1ZMRk1n</u>

Destination: Mars will offer the public the opportunity to walk on Mars with Buzz Aldrin. This one-of-a-kind experience will debut at a top-tier museum in mid-2016.

A new Ops Lab project brings 3D spacecraft designs into the world to solve problems before they're real. Initial mission users include Europa Clipper, Mars 2020, and SWOT.

The Future Ground Control System

March 2017

GSAW

Changing the paradigm of operations

Dare Mighty Things