THE AEROSPACE CORPORATION

Ground System MBSE Framework & Library

- Use Case
 - As ground systems engineers we want
 - a standard MBSE framework/structure and a library of common ground system subsystem and component models
 - to be able to
 - efficiently communicate, exchange and assemble ground system architecture models
 - efficiently integrate ground system or ground system component models
 - efficiently integrate with flight system and user system models
- Domain
 - Enablers
 - SysML, UPDM/UAFP, system modeling tools
 - Space System Ground Systems
 - Architecture: system, subsystem, major components, minor components, interfaces
 - Requirements: architectural, functional, parametric/performance
 - Logical: use cases, modes and operations, test cases, information exchanges

Objective Benefits

- 1) Have horizontally complete and vertically as complete as needed sets of requirements and specifications (architecture, interfaces, functions, parametric thresholds, objectives and relationships)
- 2) Enter or import or update changes once
- 3) Build/trace all requirements from user needs to component specifications
- 4) Generate a TRD level system model suitable for a contractor to respond to with a proposed systems, subsystem and component level specification model
- 5) Explore and maintain bounding architectures to establish the architectural, functional and parametric database
- 6) Capture and maintain excursions/innovations
- 7) Capture and maintain supporting rationale, analysis and analysis results
- 8) Integrate acquisition and development models with enterprise and systems models
- 9) Integrate systems models within an enterprise or System of Systems model
- 10) Add to/import from a system/subsystem/component library to accelerate requirements development, acquisition and concept exploration
- 11) Conduct configuration management and change analysis of funded and/or operating systems and Systems of Systems
- 12) Rapidly locate operational deviation involved components and assess alternative courses of actions and historical data
- 13) Have a nominal model of the system to assess deviations and attacks against
- 14) Have developed and captured modes and responses models to deal with deviations and attacks
- 15) Have a database framework in which other databases (such as the MAB) can be indexed (via associative meta/data
- 16) Conduct all of the "so that" activities inline or as the normal documentation/capture/communication process (i.e., as or more efficiently than current approaches)
- 17) Rapid assembly of new and excursion ground system architecture models
- 18) Efficient orientation and navigation within models from different but coordinating sources/organizations
- 19) Efficient integration of government reference architecture and contractor proposed ground system models in an MBSE environment
- 20) Database facilitated requirements traceability

- Ground System baseline framework description
 - Practical (very step by step) implementation example
 - Consistent among participants
 - Either consistent with INCOSE and OMG standards or foundation for discussions
- Generic "starter" Ground System Model
 - No proprietary or controlled information
 - Suitable as starting configuration(s) to tailor to specific concepts/designs
 - Appropriate for public release and general use
 - Development of the Generic Model informs framework development
 - Defines appropriate interfaces to enable model integration/federation

- Discussion of the merits of a common framework
- Discussion of the merits of a generic ground system model
- Identification of interested participants (present and who should be approached)
- Timing of a possible follow-on meeting to address actual effort & resources

- Definition of use cases (stakeholder requirements) for the modeling framework and for models built from that framework
- Package structure
- Interface model structure and types
- Black box and components parametric modeling
- Use of blocks/classes and parts structure
- Utilization of activity and related diagrams
- Decomposition structure (levels) of
 - Architecture
 - Hardware
 - Software
 - Requirements
 - Functions and activities
- Availability and suitability of ongoing efforts on common frameworks
- Identification/naming of common
 - requirements
 - subsystem, component and part parameters, and performance
 - functions, operations, modes, failure modes

Hypothetical "partial" folder Example

Generic Model Potential Approach Example

