
University of Southern California

Center for Systems and Software Engineering

Educating T-Shaped Computer
Science Students

Barry Boehm, University of Southern California
GSAW 2018, Feb. 28, 2018

Hardware Peopleware Economics Applications Disciplines

S
o
ft
w
a
r
e

© 2018 by USC. Published by The Aerospace Corporation with permission.

Personal USC Agenda
• Simon Ramo: Our best TRW engineers are T-shaped

• Strong in at least one technical discipline
• With working knowledge of other success-critical disciplines

• But most of our software new-hires were I-shaped CS
grads

• Early retirement decision: try to create T-shaped SW-
engineers

• USC MS-CS with specialization in software engineering
• Key courses include software architecture, user interaction,

software test & analysis, software management & economics
• And 2-semester real-client project course (2000 students to

date)
• Foundation-stone rather than capstone
• Clients generally unfamiliar with software technology
• Fall semester focused on software-intensive systems engineering

• Operations concept, Winbook requirements negotiation, prototyping,
architecture, life cycle plans, compatibility and feasibility evidence

Factors contributing to I-shaped
software engineer problems
• An increasing number of new computer science

(CS) degree programs fill up CS students’
schedules, leaving little room for non-CS courses
providing skills outside of CS. CS “breadth courses”
are more CS courses.

• Hardware-first system engineering practices often
discourage software engineers to participate in
system engineering activities

• Narrow-focused Software-CMM (Capability Maturity
Model) provided further discouragement. Here is
KPA 1 (Rqts Engr), Activity 1:

• Analysis and allocation of the system requirements is not
the responsibility of the software engineering group but is
a prerequisite for their work

3

Example problems created by I-
shaped software engineers

• The Golden Rule: Do unto others as you would
have others do unto you, i.e., build programmer-
friendly user interfaces for doctors,

• Platinum Rule: Do unto others as they would be done
unto.

• Computer scientists prize abstraction
• User name: U1, U2 vs Jim, Tina
• Inventing personas effectively helps students represent

classes of stakeholders
• Making programmer-convenient, but user-

inconvenient decisions
• 10-day data buckets vs weekly, monthly reporting

4

T-shaped MSCS-SwEngr degree program

• Foundation-stone real-client project course
• Software Management and Economics
• User Interface Design and Development
• Hardware-Software Embedded Systems
• Systems and Software Architecting

• Using Rechtin Systems Architecting approach
• Later courses in agile methods, software

verification and validation, systems and
software requirements

5

Foundation-Stone Course Practices (1/2)
Joint with Sue Mobasser while at USC

• Visit clients’ workplace and jointly develop a
desired concept of operation

• Jointly negotiate prioritized stakeholder win-win
requirements

• Jointly develop evaluation criteria for choices of
non-developmental items

• Jointly determine and prioritize project risks,
develop risk mitigation plans

• Develop clients’ business case linking
investments to quantitative and qualitative
benefits

6

Foundation-Stone Course Practices (2/2)

• Identify complementary client activities
• Participate in 4 major milestone reviews with

clients and instructors
• Develop initial increment and hold a client Core

Capability Drivethrough
• Jointly negotiate prioritized end-game revisions
• Transition software and support materials

7

Resulting Student Benefits
Hiring organizations come back for more

• CS students need more than CS skills to
survive in an inter-disciplinary world

• With T-shaped curriculum, students can
• Build up their job interview portfolio
• Acquire non-outsourceable skills
• Have a better understanding of hiring manager

needs
• Come up a rapid assimilation curve, and
• Learn how to learn

• Rapid changes in technology make systems-
oriented software engineers critical to the
success of most future system developments

8

