Application of ANSI Standards for Ground Transfer of Space Vehicle Command and Telemetry

John Pietras – GST, Inc.

GSAW 2007 Manhattan Beach, CA March 2007

Topics

- Background
- AIAA Satellite Control Network Data Transfer Committee on Standards
- Approach to developing ANSI/AIAA Satellite Control Network standards
- Target data flows supported by the ANSI/AIAA Satellite Control Network standards
- Use of ANSI/AIAA standards in support of additional data flows
- Status of the standards
- Acknowledgements
- Contact information

Background

- NASA, NOAA, and DoD signed "Satellite Operations Architecture Transition Plan" in Nov 2000
- SMC/SCNG (AFSCN acquisition agency) -sponsored AFSCN Interoperability Project (IOP)
 - Telemetry and command functions
 - Scheduling functions
- Upgrades to AFSCN ground systems transition to TCP/IP-based connectivity
- Consultative Committee for Space Data Systems (CCSDS) Space Link Extension (SLE) services selected as the basis for interoperable interfaces
 - SLE operates over TCP/IP
 - Augmentation of SLE services required to handle AFSCN legacy data flows
 - IOP prototyping of SLE-based solutions from 2001 through the present
 - See GSAW 2007 presentation "Harmonization of USG Satellite Ground Systems" (Ledlow, Spindler, Williams)

Interoperability Model

AIAA Satellite Control Network Data Transfer Committee on Standards (CoS)

- Formed in the Spring of 2005 under the auspices of AIAA (serving as agent for ANSI)
- Purpose
 - Development of standards for interoperable data transfer services for US civil, military, and commercial ground control systems
 - Accreditation as ANSI standards
- Scope
 - Support for 6 interoperable legacy command and telemetry data flows among US Government agencies and commercial TT&C service providers
 - Structured to ease reusability for other data flows

AIAA Satellite Control Network Data Transfer CoS Organizational Composition

- User Community
 - SMC/SCNG (representing DoD and AFSCN)
 - NASA JPL (representing NASA)
 - Harris Corporation (representing NOAA)
 - Honeywell DataLynx (commercial)
 - Universal Space Networks (commercial)
- Vendor Community
 - Avtec Systems
 - L3 Communications
 - RTLogic!
- General Interest and Support
 - Aerospace Corporation
 - Global Science and Technology
 - Scitor Corporation
- Non-Voting Members
 - Northrop Grumman Corporation (AF SCNC; secretariat)
 - AIAA (liaison)

Approach to Developing ANSI/AIAA Satellite Control Network Standards

- Build on AFSCN IOP prototype augmentations of CCSDS SLE standards
 – NASA and NOAA are members of CCSDS
- SLE services are augmented through adaptations and conversions of SLE for legacy DoD, NASA, and NOAA space data types

Adaptations and Conversions of CCSDS-standard SLE Services

GSAW – March 2007

ANSI/AIAA Standards

- Adaptations and Conversions of CCSDS Space Link Extension Forward Communications Link Transmission Unit Transfer Service
 - ANSI/AIAA S-123-2007
 - Defines adaptations and conversions to transport command data from mission ground facility to ground station via the SLE FCLTU transfer service
 - Hereinafter referred to as the FCLTU A&C Specification
- Adaptations and Conversions of CCSDS Space Link Extension Return All Frames Transfer Service
 - ANSI/AIAA S-124-2007
 - Defines adaptations and conversions to transport telemetry data from ground station to mission ground facility via the SLE RAF transfer service
 - Also used to support command echo
 - Hereinafter referred to as the RAF A&C Specification

Standard Data Flows Supported by the Adaptation and Conversion Standards

- Discrete and streaming ternary symbol commanding and command echo return
- Streaming binary commanding and command echo
- Time-correlated unframed telemetry

Ternary Symbol Commanding

- Characteristics of ternary symbol commanding
 - '0', '1', and 'S' symbols are used to command the Space Element
 - AFSCN SGLS carries these symbols as FSK-modulated tones on the space link
 - Multiple legacy ground protocols exist for transporting these system across terrestrial networks
- Ternary symbol commanding capabilities of the ANSI FCLTU A&C Specification
 - Continuous symbol stream mode
 - Transfers all ternary symbols generated by the user
 - Used when exact symbol count spacing must be maintained between commands
 - Discrete ternary block commands
 - Transfers only *block commands*; no intermediary idle symbols
 - More robust and has lower bandwidth utilization than continuous mode
 - Maintains constant delay across WAN
 - Supports idle pattern of either all 'S' symbols or no ('null') symbols to be put on the uplink in the absence of user data

Ternary Symbol Command Echo

- Characteristics of ternary symbol command echo
 - Command symbols are turned around by the ground station and "echoed" to the user
 - Turn-around point varies by service provider
- Ternary symbol command echo capabilities of the ANSI RAF A&C Specification
 - Continuous symbol stream is transferred across the WAN via the RAF transfer service
 - Transfers all ternary symbols that have been output to the transmitter
 - Supports optional detection and removal of preambles and postambles
 - Supports optional capability to insert idle 'S' symbols in the absence of echoed symbols from the service provider
 - Supports optional substitution of 'S' symbols for 'null' symbols in echoed stream

Ternary Commanding and Command Echo

Binary Commanding and Command Echo

- Characteristics of binary commanding (as supported by the current ANSI standards)
 - Continuous stream of bits (0/1) is used to command the Space Element
 - Command structure within the bitstream is not identified
 - Typically, these bits are BPSK-modulated onto the space link
- Binary commanding capabilities of the ANSI FCLTU A&C Specification
 - Transfers continuous bitstream containing all bits generated by the user
 - In the absence of user-generated binary data, uplink is modulated with alternating 0/1 idle pattern (CCSDS-standard)
- Binary command echo capabilities of the ANSI RAF A&C Specification
 - Continuous bitstream is transferred across the WAN via the RAF transfer service
 - Supports optional capability to insert alternating 0/1 idle pattern in the absence of echoed data from the service provider

Binary Commanding and Command Echo

GSAW – March 2007

Time-Correlated Unframed Telemetry

- Characteristics of time-correlated unframed telemetry
 - Continuous telemetry bitstream
 - Framing structure within the bitstream is not identified
 - Release of bits to user telemetry system must be correlated to a continuous time signal (e.g., IRIG-B) that represents the original time of receipt at the ground station
- Time-correlated unframed telemetry capabilities of the ANSI RAF A&C Specification
 - Continuous bitstream is segmented, transferred across the WAN via the RAF transfer service, and reserialized for input to the user telemetry system
 - Bits are clocked out to the user telemetry system correlated to a time signal that replicates the time of receipt at the ground station
 - Supports optional capability to insert alternating 0/1 idle pattern in the absence of telemetry from the service provider

Time-Correlated Unframed Telemetry

GSAW – March 2007

Use of ANSI/AIAA A&C Standards in Support of Additional Data Flows

- Adaptation and Conversion functions may be used as basis for derived specifications that support other data flows over SLE transfer services
 - E.g., subset of time-correlated telemetry functions can be used to delivery "unframed" telemetry
- Current activity to derive new AFSCN "ternary over binary" command and command echo services
 - Supports a new class of space elements that use binary representation of ternary signals on the uplink
 - Supports migration to Unified S-Band (USB)
 - Characteristics of ternary-over-binary commanding
 - Ternary commands are converted to binary commands on the Service User side
 - Binary commands are transferred across WAN and uplinked
 - Binary commands are translated back to ternary onboard the space element

Ternary-Over-Binary Commanding and Command Echo

GSAW – March 2007

Status

- First public review occurred during the summer of 2006
- Currently in final public review for accreditation as ANSI standards (ends 2 April 2007)
 - No new review comments to-date
 - To review drafts, please contact Craig Day: craigd@aiaa.org
- Publication on AIAA standards website expected by 13 April 2007
 - FCLTU A&C (ANSI/AIAA S-123-2007) http://www.aiaa.org/content.cfm?pageid=363&id=1643
 - RAF A&C (ANSI/AIAA S-124-2007) http://www.aiaa.org/content.cfm?pageid=363&id=1644
- In-progress draft MOU among AF SMC/SCNG, NASA, and NOAA
 - US Government ground control networks to migrate toward CCSDS SLE and the associated ANSI standards for interoperability

Acknowledgements

- AF SMC/SCNG has provided funding for:
 - Technical development of the ANSI/AIAA standards
 - Documentation of the ANSI/AIAA standards
 - This presentation to GSAW
- Lance Williams (CoS Secretariat) SCNC/Northrop Grumman
- The members of the Satellite Control Network Data Transfer CoS
 - Rob Andzik RTLogic!
 - Paul Blanchard L3 Communications
 - Stephen Boulger Universal Space Network
 - Craig Day AIAA Liaison
 - Bill Deng Aerospace Corporation
 - Lou Moss NOAA (Harris Corporation)
 - Brian Safigan Avetc Systems
 - Michael Stoloff NASA (Jet Propulsion Laboratory)
 - Capt. Robert Thompson AFSCN (SMC/SNI)
 - John Vaccarino Honeywell DataLynx
 - Ron Woll Scitor Corporation

Contact Information

- John Pietras AIAA Satellite Control Network Data Transfer CoS Chairman
 - John.Pietras@gst.com
- Lance Williams AIAA Satellite Control Network Data Transfer CoS Secretariat

- Lance.Williams@afscn.com