Raytheon

Operationally Responsive Facets of the NPOESS Ground System

National Polar-Orbiting Operational Environmental Satellite System (NPOESS)

Don B


Keith Reinke Pete Phillips Joe Mulligan

DOC . DoD

NASA

### Agenda

- NPOESS Mission and Architecture
- Ground System Maturity
- Software Reuse
- Improved Data Latency
- Increased Bandwidth for Antarctica
- Processing Architecture Benefits
- Industry Standard Output Format



#### **Mission**

- National, operational, polar-orbiting environmental monitoring capability for defense and civil applications
- Incorporates new technology from NASA programs
- Includes NPOESS Preparatory Project risk reduction mission
- International cooperation with European MetOp satellite

#### **Benefits**

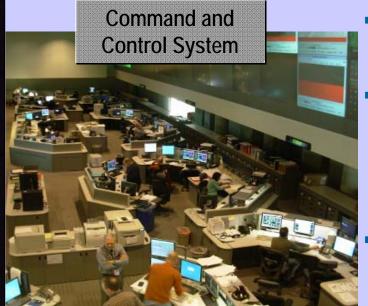
- Critical input to weather forecast models
- Science-quality data to all users including research scientists and continuity of climate data records

NPOESS 13:30

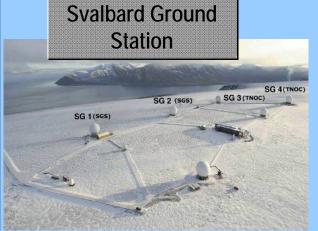
#### NPOESS 17:30

Equatorial Crossing Local Times

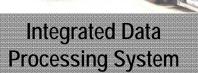
**Broad Mission Requires Operational Responsiveness** 


MetOp

09:30


#### **NPOESS** Architecture




## Ground System Maturity



- NOAA Satellite Operations Facility (NSOF) populated
- Command, Control and Communications Segment (C3S) installed and acceptance tested at 4 sites
- NPP Flight Vehicle Simulator installed at NSOF



- NPP Svalbard Antenna Modifications Completed
- Communications services to NSOF established
- End to End compatibility checkouts conducted
- WindSat data relay operational



- Build 1.4 completed qualification testing
- Final NPP Software Build 1.5 in development
- NSOF Installation in progress
- Acceptance Test at sites in Summer 2008

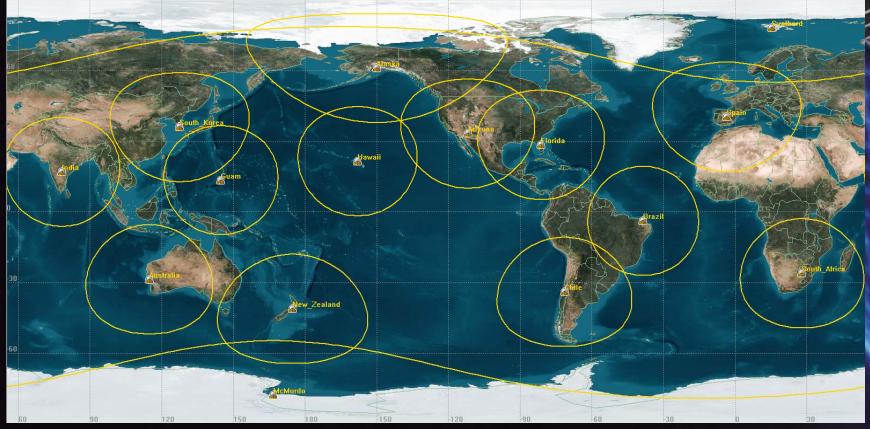
Ground Segment on schedule and on path to meeting all goals

#### **Software Reuse**

 NPOESS Phase 1 (NPP) Command and Control Software reuse was very high percentage of total delivered SLOC (Source Lines of Code) for program

|     | New SLOC | Reuse SLOC | Total SLOC | Reuse % |  |
|-----|----------|------------|------------|---------|--|
| C3S | 291,872  | 1,698,784  | 1,990,656  | 85%     |  |

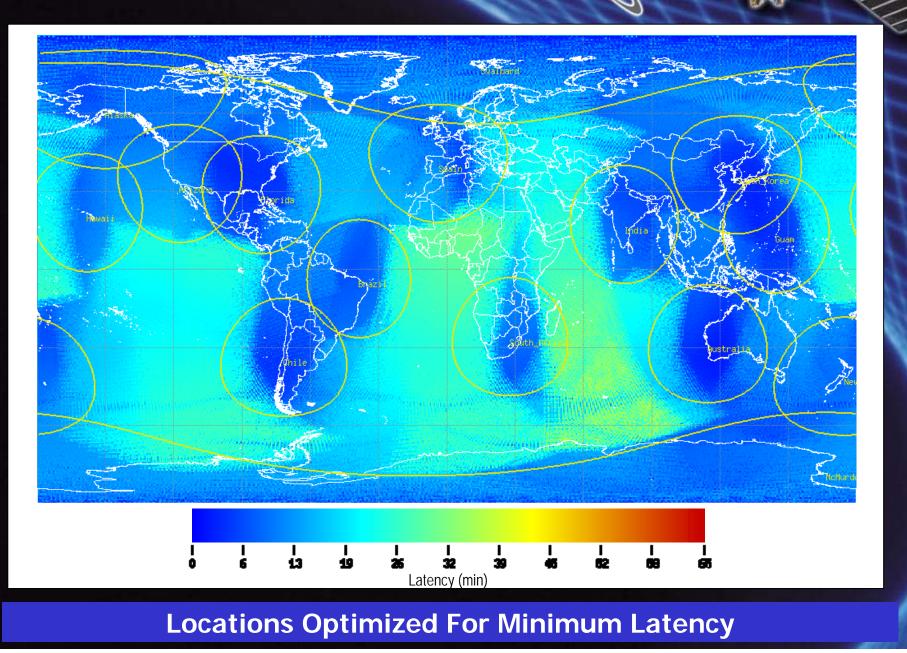
The NPOESS Phase 1 software reuse came from many other successful Commercial, Civil, DoD and Government Missions/Programs


- Reduced risks, schedule, and costs by not having to "reinvent the wheel"
- Core command and control components highly mature, feature rich
- Software reuse was a key component in early delivery of C3S

 Raytheon IIS has increased the reuse percentage on each successive program

- Software is designed for reuse
- Factors for re-design, re-code and re-test account for reusability of SW
- Re-test is always required for reused SW

C3S Early Deployment Enabled by High Software Reuse


## Worldwide Receptor Sites Reduce Latency



- 15 global receptors provide multiple data delivery path, high availability
- Unmanned receptors centrally controlled by Mission Management Center
- Extremely robust; meets system performance with 6 simultaneous receptor failures
- Leverages high bandwidth commercial fiber, cost effective delivery
- On track to attain Landing Rights in host countries

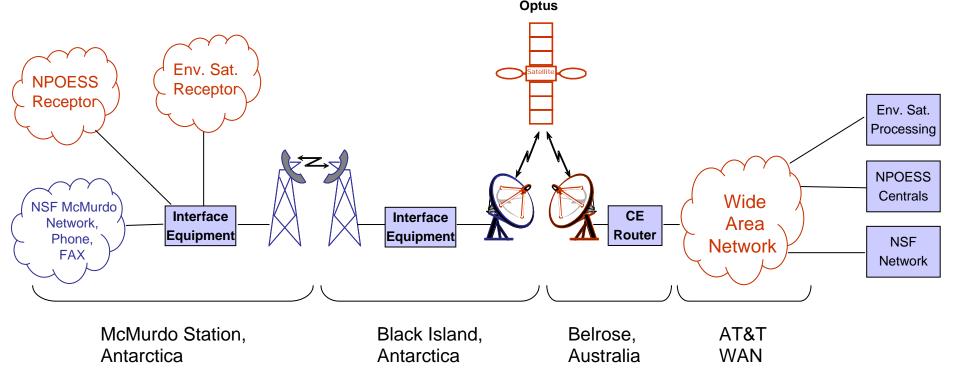
**Reduces Data Latency from Hours to Minutes** 

# **NPOESS Latency Profile**



#### NPOESS Data Parameter Comparison

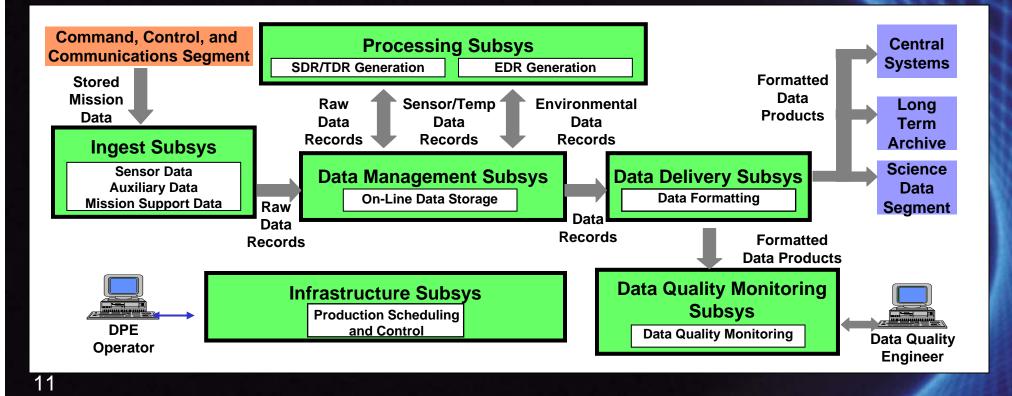



|                     | <ul> <li>DMSP/POES</li> <li>NPP</li> <li>DATA LATENCY – Delivery Of Data To Users</li> <li>NPOESS</li> </ul> |                |                         |                        |                        |  |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------|----------------|-------------------------|------------------------|------------------------|--|--|--|
|                     |                                                                                                              |                |                         |                        | 100 – 150 minutes      |  |  |  |
|                     |                                                                                                              | 140 minutes    |                         |                        |                        |  |  |  |
|                     | 28 minutes                                                                                                   |                |                         |                        |                        |  |  |  |
| KEY DATA PARAMETERS |                                                                                                              |                |                         |                        |                        |  |  |  |
| Mission             | Observed<br>Data Rate                                                                                        | Data<br>Volume | Downlink<br>Frequencies | Spectral<br>Capability | Vertical<br>Resolution |  |  |  |
| Heritage            | 1.5 Mbps                                                                                                     | 6.3 GB/Day     | VHF, L-, S-Band         | 5 bands                | 40 bands               |  |  |  |
| NPOESS              | 20 Mbps                                                                                                      | 5.4 TB/Day     | S-, X-, Ka-Band         | 22 bands               | 1300 bands             |  |  |  |

NPOESS improves robustness, accuracy, and timeliness of delivery of essential weather and climate data

# Increased Bandwidth for Antarctica




- NPOESS SATCOM deployed in 2007 in Antarctica
  - Risk Reduction for NPOESS Antarctic Receptor
  - Increased Bandwidth by a factor of 3 for National Science Foundation Users at McMurdo Station
  - Provides opportunity to downlink other Environmental Satellite Programs through Antarctica and reduce latency – i.e. METOP, DMSP



## Data Processing Architecture



- Data Processing System must process large volumes of data with low latency
- Processing algorithms are used to turn raw sensor readings into calibrated data records
- Processing algorithms architected into Input-Processing-Output (I-P-O) format



#### **I-P-O Benefits**

# NPOESS

#### Processing algorithm initiated after all required inputs are present

- Simplifies graceful degradation
- Input quality checks performed up-front
- Prevents occupation of CPUs by active processes waiting for additional input
- Modularization and isolation of algorithm simplifies algorithm updates
- Standardized output processing
- Increased maintainability
  - Rapid isolation of error
  - Simplified logic, error handling, and recovery

### Output Formats Utilize Industry Standard

- NPOESS writes all externally-distributed products in Hierarchical Data Format 5 (HDF5)
- HDF5 is a self-describing format designed for storing scientific data
  - It provides a structure for organizing objects and optimizes the storage of multidimensional arrays of data elements
  - The HDF5 libraries are open source and run on multiple platforms
- All NPOESS products are organized within HDF5 in a consistent manner (e.g. use the same group structure)
  - Familiarity with one product provides familiarity with all NPOESS products
  - Approach allows for extensible temporal dimension
    - Simply extending dataset dimension permits storage of additional granules
  - A separate XML Product Profile documents product fields
    - Each product is described by a Product Profile
      - All profiles use the same type and XML schema definition
    - Profiles contain data types, descriptions, units, dimensions, scaling information, etc.
    - Product profiles can be viewed in a web browser through the use of a style sheet
- Flexibility in product sizing enabled through separation of geolocation information
  - Placed in separate product group or separate file (initial requestor controlled)

#### Synopsis

NPOESS Ground Segment has many facets that provide operational responsiveness to benefit user communities

- Command and Control Software reuse enabled early deployment, high initial maturity
- Improved latency makes environmental data more valuable to operational users
- Increased Antarctic communications bandwidth provides benefit to Antarctica Scientists and environmental satellite community
- Data Processing architecture provides mechanism to readily update environmental algorithms
- Data Processing output data follows industry standard HDF5 standard, simplifying creation of value-added products by users

#### **NPOESS Ground Segment is Operationally Responsive**