

CCSDS Report

Mike Kearney

CCSDS Management Council Chairman CCSDS General Secretary NASA MSFC EO-01 256-544-2029 <u>Mike.Kearney@nasa.gov</u>

March 2008

The Consultative Committee for Space Data Systems

- The goal: For Space Data Systems, enhance *interoperability* and cross-support, while also reducing risk, development time and project costs, for government, industry, agencies, vendors and programs.
- Interoperability between agencies & teams translates to operational flexibility, capability and access to additional resources
- CCSDS Started in 1982 developing at the lower layers of protocol stack (Layers 1 to 3)
- Scope has grown to cover standards throughout the ISO communications stack layers, plus other Data Systems areas (architecture, archive, security, XML exchange formats, etc.)

CCSDS composition

Thirty-two working groups (some in formative stages **\epsilon**)

CCSDS Technical Context: Six Focus Areas

CCSDS Technical Context: Six Focus Areas

CCSDS Organizational Interrelationships

FLOW OF GUIDANCE / REQUIREMENTS

(Note: Agency makeup varies between these groups)

Interoperability Plenary – highest space agency agreements on interoperability

IOAG: Interagency Ops Advisory Group interoperable mission support infrastructure

CCSDS: open international standards for space mission interoperability

SFCG: space agency frequency management forum

PEER ORGANIZATIONAL RELATIONSHIPS

OMG: Object Management Group: industry standards for exchange of application information among vendor products

IETF/IRTF: open international standards for IP suite and Disruption Tolerant Networking (DTN)

ECSS: European Consortium for Space Standards - European regional standards for space mission support

AIAA: North American regional standards for space mission support

www.ccsds.org

Recently Completed Reviews

	Document #	Document Name	Туре	Date	Issue	Comments Due By
Click Here to Review	CCSDS 735.1-R-1	Asynchronous Message Service	Red Book	2/2007	1	5/9/2007
<u>Click Here</u> to Review	CCSDS 661.0-R-1	XML Formatted Data Unit (XFDU) Structure and Construction Rules	Red Book	1/2007	1	5/3/2007
Click Here to Review	CCSDS 311.0-R-1	Reference Architecture for Space Data Systems	Red Book	1/2007	1	4/9/2007
Click Here to Review	CCSDS 503.0-R-2	Tracking Data Message	Red Book	12/2006	2	3/30/2007
Click Here to Review	CCSDS 702.1-R-2	IP over CCSDS Space Links	Red Book	1/2007	2	3/7/2007

www.ccsds.org

9

What Standards do for Operations

Operational benefits

- \diamond Enforce operation's engagement early in the development cycle
- Standards result from operational "lessons learned" from many groups and organizations, not just a few.
- Operational Risk reduction achieved because systems and processes are better "wrung out."
- ✦Operational objectives of standards work:
 - \diamond Transparency in both design and operations
 - \diamond Flexibility in configuration of developed or procured systems
 - Flexibility in adapting programs to allow external/international partnerships
 - \diamond Flexibility in planned usage of external (other agency's) assets
 - \diamond Ability to rapidly adapt to contingency operations
 - \diamond Simplified interface agreements between systems and partners
 - Simplified interfaces contribute to streamlined operations

- CCSDS provides these benefits specifically for the Space Data Systems domain
 - Spacecraft and planetary data systems, ground data systems and all in between
- Even if a program doesn't *plan* on external or international partners, they need the capabilities that CCSDS brings
 - \diamond Keeping options open to adapt a program support plan
 - \diamond Allowing rapid configuration for contingency operations options
- Examples from a real program, the UK's Space Technology Research Vehicle (STRV):
 - Contingency: In 1995, STRV-1a lost attitude. NASA's DSN was asked to support using CCSDS command formats to send very short packets, banging continuously on the spacecraft. Finally, one of them got in and restored control.
 - ♦ Routine: DSN supported STRV with Data Acquisition and Tracking
 - Programmatic change: In 1996, the STRV program needed to close down the ground station for refurbishment. Control was transferred to the University of Colorado at Boulder, cheaply and quickly.

Sampling of technical topics

- New Low-Density Parity Check codes proposed as standard by NASA
 - \diamond LDPC codes provide better performance in space environment
 - Single-agency "Orange book" became NASA's proposal for full "Blue Book" standard
 - \diamond Not immediately accepted by other agencies work to be done.
- ✦ XML activities in many areas
 - \diamond Data Archive, Registries, Repositories, etc.
 - CCSDS XML Special Interest Group (SIG) working towards consistent approach across multiple standards
- Spacecraft Monitor and Control (SM&C)
 - \diamond One of the most active working groups
 - ♦ Service Oriented Architecture approach to application-level services
 - ♦ Goals: Interoperable monitor/control services, application portability between flight/ground or between partner agencies.
 - New sub-areas starting: Time services, automation services, planning/scheduling services, remote software management services
 - \diamond XML Telemetry and Command Exchange (XTCE) also in this area
 - Worked jointly with OMG, getting broad acceptance

- Recently approved new work areas:
 - Delay Tolerant Networking
 - Voice and Motion Imagery (Video, etc.)
- ✦ Proposed new work areas:
 - \diamond Optical channel coding (in Space Link Services area)
 - \diamond Space Data Link Security
 - Long Erasure Codes
 - Spacecraft Onboard Plug-n-Play
 - Cross Support Architecture
- ✦ Other "Hot Topics"
 - ► IP-over-CCSDS
 - Asynchronous Messaging Service
 - Wireless (onboard and planetary surface) Marking Group of the second second
 - Multi/HyperSpectral Data Compression Multi/HyperSpectral Data Comp

Recent CCSDS Status

✦ NASA's Constellation program

- \diamond Shuttle replacement, human missions to ISS, Lunar, and beyond
- Recent efforts in Constellation have enabled better alignment with CCSDS standards
 - Notable recent decision: Internet Protocol (IP) encapsulation in CCSDS as first step towards deep space internetworking
- CCSDS with Constellation involvement will enable interoperability with internationals in advance of formal intergovernmental program/project agreements
- ✦ Membership
 - \diamond China expected to accept full membership soon
 - \diamond India considering reinitializing full membership
- ✦ Next meeting: Berlin, October 13-17 2008.
 - \diamond Visit <u>www.ccsds.org</u> for info.

- ✦Take-home message: Still much work to be done
 - Enabling interoperability between international agencies for future missions – both Earth-Orbital and Exploration
 - Long-range vision automated routing and delay tolerant networking for deep space crosslinks between spacecraft and surface systems
 - Near-term need evolutionary approach to sustain cross-support agreements with other agencies.
- Organizations with a stake in the future of Space Operations and the expertise to contribute to CCSDS should become engaged.