
Copyright © 2018, Raytheon Company. All rights reserved.

Leaning Into Large Ground System Vulnerabilities 
with Machine Learning

Raytheon Intelligence, 
Information and Services
David A Wilson, Addy Moran, Joshua Welch
February 26, 2019



Current Situation

3/6/2019 2(1) 2018 Open Source Security and Risk Analysis, Synopsys Center for Open Source Research & Innovation
(2) As of 12/31/2018, https://nvd.nist.gov/general/visualizations/vulnerability-visualizations/cvss-severity-distribution-over-time

4,800+ open source vulnerabilities were reported in 20171

15,130 Security Vulnerabilities published in 2018 
(3,944 High Priority)2

Modern ground systems have 
complex combinations of 
COTS/FOSS products

Vulnerability updates can become 
an unmanageable amount of 
work for system administrators. 

Potential for:
 Alert fatigue
 Updates unsuccessfully 

processed
Low/Medium/High Security Vulnerabilities Published in 2018



Approach

3/6/2019 3

Example Markov Chain Model

Create a risk model that provides risk 
posture of sum of COTS/FOSS 
vulnerabilities and provide suggested 
patches to improve risk

Administrator can easily improve overall system risk 
posture by applying suggested prioritized patches

Use Markov chains, Human-
Interactive Machine learning, 
and data-mining to prioritize 
system patches



Approach
 Use a Markov chain model to simulate the movements 

of a hacker inside a system. 
 Quantitative security data such as Operating System 

(OS) scans, network scans, and network topologies to 
classify the severity of each vulnerability. 

 Takes into account the number of connections per 
each component and classifies a weight per 
vulnerability, and uses this to rank patches. 

 This vulnerability rank is used as a prioritization 
scheme.

 The algorithm uses vulnerability data and integrates 
the data into the network topology and builds an 
absorbing Markov model to predict which systems an 
attacker is most likely to attack (and therefore patching 
priorities).

3/6/2019 4



Vulnerability Data
 The Common Vulnerability Scoring System 

3.0 (CVSS) provides an open framework 
for communicating the characteristics and 
impacts of IT vulnerabilities.

 CVSS 3.0 metrics for risk assessment

3/6/2019 5

Exploitability Metrics: Reflect the characteristics of the thing that is 
vulnerable. It has Attack Vector (AV), Attack Complexity (AC), 
Privileges Required (PR) and User Interaction (UI).
Scope (S): Scope refers to the collection of privileges defined by a 
computing authority when granting access to computing resources. 
When the vulnerability of a software component governed by one 
authorization scope is able to affect resources governed by another 
authorization scope, a Scope change has occurred.
Impact Metrics: Refer to the properties of the impacted component. 
It has Confidentiality Impact (C), Integrity Impact (I) and Availability 
Impact (A).
Temporal Metrics: Measure the current state of exploit techniques 
or code availability, the existence of any patches or workarounds, or 
the confidence that one has in the description of a vulnerability: 
Exploit Code Maturity (E), Remediation level (RL), Report 
Confidence (RC). 
Environmental Metrics: Enable the analyst to customize the CVSS 
score depending on the importance of the affected IT asset to a 
user's organization, measured in terms of complementary/alternative 
security controls in place, Confidentiality, Integrity, and Availability. 



Representative System
 Secure DevOps Environment instantiated on Raytheon’s internal Cyber 

Range
 ~50 FOSS Products
 VMWare, STIG Hardened RHEL 7.5, Containers, etc.

3/6/2019 6



Decision Support Process

3/6/2019 7

Using known 
vulnerabilities (e.g. 
NVD), display a risk 
assessment of a 
subject FOSS stack 
and network 
topology “system”.

Utilizing the subject 
system, create a 
baseline of the 
patches required for 
a fully qualified 
(patched) system.

Using a graphing or 
data visualization 
interface, rank the 
most critical patches 
to the least critical.

Provide decision 
logic for the ranking 
utilizing text and 
visual components.

Create decision logic 
parameters to 
display tangible 
evidence that 
supports the ranking 
(severity, 
exploitability, etc.).

Provide the most 
optimal upgrade 
path (prescriptive) 
for the patch.

Assess System Risk
Baseline System Patches

Rank Vulnerabilities / Patches
Provide Decision Logic for Validation

Provide Upgrade Path



Decision Support System
 Provides a comprehensive, 

prioritized list of patches
 Patches are organized in the 

order that is suggested the 
patch administrator apply them 

 Can be deployed in AWS or as 
a containerized service

3/6/2019 8



Future Work
 Algorithm Improvements: integrate 

additional vulnerability data sources
 UI/UX Optimization: Develop system status 

visualization 
 Develop “patching pipeline” for use in 

Secure DevOps by automating:
 the gathering of information 
 the screening process 
 patch testing and deployment

3/6/2019 9

Proposal

Supply Chain

•Harden environment
•Secure Coding
•Code Analysis
•Version ControlDevelopment

•Acceptance Testing
• Integration Testing
•DAST

Continuous 
Integration

•Container/Image 
Screening

Continuous 
Deployment

•Code Analysis
•Patch Management Maintenance

Example of a Secure DevOps Pipeline 


	Leaning Into Large Ground System Vulnerabilities with Machine Learning
	Current Situation
	Approach
	Approach
	Vulnerability Data
	Representative System
	Decision Support Process
	Decision Support System
	Future Work

